فضاء إقليدي

(بالتحويل من مكان إقليدي)

الفضاء الإقليدي (بالإنجليزية: Euclidean space)‏ أو الفضاء المتجهي الإقليدي [1][2][3] هو فضاء متجهي معرف على حقل الأعداد الحقيقية مزود بجداء سلمي (لكل عنصر و من ) و بُعده منتهٍ. الفضاء المتجهي مثال على الفضاء الإقليدي.

كل نقطة في فضاء إقليدي ثلاثي الأبعاد تحدد بواسطة ثلاث إحداثيات.
الكرة، هو أكثر الأشكال كمالا في الفضاء نسبة إلى المدرسة الفيثاغورية، وهي أيضا مفهوم مهم جدا في الفهم العصري للفضاءات الإقليدية

الفضاء الإقليدي هو الفضاء الرئيسي للهندسة الكلاسيكية. في الأصل كان هذا الفضاء معرفا فضاء ثنائيَ وثلاثيَ الأبعاد. فيما بعد، عُمم ليصبح من الدرجة n.

قدم علماء الهندسة الإغريق مفهوم الفضاء الإقليدي من أجل نمذجة الكون. الإبداع الكبير الذي جاء به هؤلاء العلماء هو البرهان على جميع خصائص هذا الفضاء في شكل مبرهنات توصلوا إليها انطلاقا من مجموعة من الموضوعات أو المسلمات أو البديهيات. قسمت هذه البديهيات إلى صنفين اثنين، أحدهما هو ما هو بديهي ولا يحتاج إلى برهان (منها على سبيل المثال، البديهية التي تنص على أنه لا يمر أكثر من خط مستقيم واحد من نقطتين معلومتين) والثاني هو ما يُعتقد استحالة البرهان عليه كما هو الحال بالنسبة إلى مسلمة التوازي.

بعد تقديم الهندسة غير الإقليدية خلال القرن التاسع عشر، أعيدت صياغة الموضوعات القديمة من أجل إعطاء تعريف جديد للفضاءات الإقليدية من خلال نظام بديهيات. بُين أن تعريفا معتمدا على الفضاءات المتجهية والجبر الخطي يكافئ التعريف المعتمد على نظام البديهيات. هذا التعريف هو الأكثر استعمالا في الرياضيات المعاصرة.

تعريفعدل

أمثلةعدل

البنية المتريةعدل

الفضاء المتجهي  ، مرتبطا بالفضاء الإقليدي   هو فضاء جداء داخلي. انظر إلى شكل متماثل مزدوج الخطية

 

المسافة والطولعدل

المسافة (وبالتحديد المسافة الإقليدية) بين نقطتين اثنتين في فضاء إقليدي هي معيار المتجهة التي تعرف الإزاحة التي تربط نقطة بنقطة ثانية ؛ أي أن :

 

انظر إلى متباينة المثلث وإلى فضاء كامل.

 

التعامدعدل

انظر إلى زاوية قائمة.

الزواياعدل

الإحداثيات الديكارتيةعدل

كل فضاء متجي إقليدي يملك قاعدة ممنظمة متعامدة (فعليا، عدد هذه القواعد غير منته عندما يكون عدد الأبعاد أكبر من الاثنين، وعددهن يساوي الاثنين عندما يكون عدد الأبعاد مساويا لواحد). تتمثل هذه القاعدة في مجموعة من المتجهات   كلهن متجهات وحدة (أي أن  )، وحيث كل متجهتين منهن متعامدتين الواحدة منهما مع الأخرى (أي أن   عندما يتوفر ij ).

إحداثيات أخرىعدل

الطوبولوجياعدل

المسافة الإقليدية تجعل من الفضاء الإقليدي فضاءا متريا وبالتالي فضاءا طوبولوجيا.

المجموعات المفتوحة هن مجموعات جزئية تحتوين على جوارات كروية حول كل نقطة من نقطهن.

انظر إلى بُعد طوبولوجي وإلى تشابه الشكل البلوري وإلى طوبولوجيا فضاء جزئي وإلى فضاء كامل وإلى فضاء متراص محليا وإلى مجموعة محاطة.

التعريف باستعمال الموضوعاتعدل

الاستعمالعدل

فضاءات هندسية أخرىعدل

الهندسة غير الإقليديةعدل

عادة ما تشير الهندسة غير الإقليدية إلى هندسات حيث تكون موضوعة التوازي خاطئة. من بين هذه الهندسات، الهندسة الإهليلجية حيث مجموع زوايا مثلث تزيد عن المائة وثمانين درجة والهندسة الزائدية حيث مجموع زوايا مثلث تقل عن المائة وثمانين درجة. شكل المجيء بهن خلال النصف الثاني من القرن التاسع عشر ثم البرهان على أن نظريتهن متماسكة (إذا لم تكن الهندسة الإقليدية هي بدورها متناقضة) واحدا من المفارقات اللائي انبثقت منهن أزمة أسس الرياضيات خلال بداية القرن العشرين.

انظر أيضاعدل

مراجععدل


  1. ^ "معلومات عن فضاء إقليدي على موقع thes.bncf.firenze.sbn.it". thes.bncf.firenze.sbn.it. مؤرشف من الأصل في 14 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ "معلومات عن فضاء إقليدي على موقع jstor.org". jstor.org. مؤرشف من الأصل في 25 مايو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ "معلومات عن فضاء إقليدي على موقع cultureelwoordenboek.nl". cultureelwoordenboek.nl. مؤرشف من الأصل في 8 ديسمبر 2016. الوسيط |CitationClass= تم تجاهله (مساعدة)