في الهندسة الإقليدية، المضلع المنتظم (بالإنجليزية: Regular polygon)‏ هو كل مضلع بسيط جميع زواياه متساوية في القياس.[1][2][3] من الممكن أن يكون المضلع المنتظم محدباً أو نجمياً، النجمة الخماسية مثالا.

مضلع منتظم سباعي الأضلاع .

كون أضلاع متعدد أضلاع متساويةً في القياس لا يجعمل منه متعدد أضلاع منتظم، بل يجعل منه مضلعا متساوي الأضلاع. الصنفان مختلفان. المعين على سبيل المثال، هو رباعي أضلاع متساوي الأضلاع وليس بمضلع منتظم.

خصائص عامة

عدل

هذه الخصائص تنطبق على المضلعات المحدبة والنجمية:

التماثل

عدل

انظر إلى زمرة التماثل.

المضلعات المنتظمة المحدبة

عدل

الزوايا

عدل
عدد الأضلاع قياس الزاوية الداخلية مجموع قياسات الزوايا الداخلية
     
     
     
     
     
     
     
     
     
     
10    

الأقطار

عدل

من أجل n>2، عدد الأقطار هو   ، يمكن رسم   قطر من كل رأس، تقسم الأقطار من الرأس الواحد المضلع إلى   مثلث.

المساحة

عدل
عدد
الأضلع
المساحة عندما يساوي الضلع واحدا s=1 المساحة عندما يساوي شعاع الدائرة المحيطة واحدا R=1 المساحة عندما تساوي المسافة الفاصلة بين مركز المضلع وأحد أضلعه واحدا a=1
قيمة دقيقة قيمة مقربة قيمة دقيقة قيمة مقربة Approximate as
fraction of circumcircle area
قيمة دقيقة قيمة مقربة Approximate as
fraction of incircle area
n          
3 3/4 0.433012702 33/4 1.299038105 0.4134966714 33 5.196152424 1.653986686
4 1 1.000000000 2 2.000000000 0.6366197722 4 4.000000000 1.273239544
5 1/425+105 1.720477401 5/4(5+5)/2 2.377641291 0.7568267288 55-25 3.632712640 1.156328347
6 33/2 2.598076211 33/2 2.598076211 0.8269933428 23 3.464101616 1.102657791
7 3.633912444 2.736410189 0.8710264157 3.371022333 1.073029735
8 2+22 4.828427125 22 2.828427125 0.9003163160 8(2-1) 3.313708500 1.054786175
9 6.181824194 2.892544244 0.9207254290 3.275732109 1.042697914
10 5/25+25 7.694208843 5/2(5-5)/2 2.938926262 0.9354892840 225-105 3.249196963 1.034251515
11 9.365639907 2.973524496 0.9465022440 3.229891423 1.028106371
12 6+33 11.19615242 3 3.000000000 0.9549296586 12(2-3) 3.215390309 1.023490523
13 13.18576833 3.020700617 0.9615188694 3.204212220 1.019932427
14 15.33450194 3.037186175 0.9667663859 3.195408642 1.017130161
15 17.64236291 3.050524822 0.9710122088 3.188348426 1.014882824
16 4 (1+2+2 (2+2)) 20.10935797 42-2 3.061467460 0.9744953584 16 (1+2)(2 (2-2)-1) 3.182597878 1.013052368
17 22.73549190 3.070554163 0.9773877456 3.177850752 1.011541311
18 25.52076819 3.078181290 0.9798155361 3.173885653 1.010279181
19 28.46518943 3.084644958 0.9818729854 3.170539238 1.009213984
20 5 (1+5+5+25) 31.56875757 5/2 (5-1) 3.090169944 0.9836316430 20 (1+5-5+25) 3.167688806 1.008306663
100 795.5128988 3.139525977 0.9993421565 3.142626605 1.000329117
1000 79577.20975 3.141571983 0.9999934200 3.141602989 1.000003290
10,000 7957746.893 3.141592448 0.9999999345 3.141592757 1.000000033
1,000,000 79577471545 3.141592654 1.000000000 3.141592654 1.000000000

المضلعات القابلة للإنشاء

عدل

بعض المضلعات المنتظمة قابلة للإنشاء بالمسطرة والفرجار بسهولة وبعضها غير قابل للإنشاء بالمسطرة والفرجار بتاتا، سباعي الأضلع مثالا.

علم علماء الرياضيات الإغريق كيفية إنشاء مضلعات منتظمة عدد أضلاعهن الثلاثة والأربعة والخمسة، كما علموا إنشاء مضلع منتظم عدد أضلاعه ضعف عدد أضلاع مضلع منتظم معلوم. أدى بهم ذلك إلى طرح السؤال التالي:

هل جميع المضلعات المنتظمة قابلة للإنشاء مهما كان عدد أضلاعهن ؟ وإذا كان الجواب بالنفي، فما هن المضلعات القابلة للإنشاء وما هن المضلعات غير ذلك ؟

في عام 1796، برهن كارل فريدريش غاوس على قابلية إنشاء مضلع منتظم عدد أضلاعه سبعة عشر. بعد ذلك بخمس سنوات طور نظرية المعروفة باسم الدورة الغاوسية في كتابه استفسارات حسابية. هذه النظرية مكنته من إعطاء شرط كاف لقابلية الإنشاء وهو كما يلي:

يكون مضلع منتظم عدد أضلاعه يساوي n قابلا للإنشاء بالفرجار والمسطرة إذا كان عدد أضلاعه هذا جداءا لقوة ما لاثنين من جهة وعدد معين من أعداد فيرما الأولية، مختلفةً عن بعضها البعض من جهة ثانية (بما في ذلك الحالة حيث يكون عددهن مساويا للصفر).
على سبيل المثال، 17 هو عدد أولي لفيرما، 1 هو قوة لاثنين من الدرجة الصفر. هذا جعل مضلعا منتظما عدد أضلاعه سبعة عشر قابلا للإنشاء.
على سبيل المثال الثاني، 8 هو قوة لاثنين من الدرجة الثالثة. هذا يجعل من ثماني أضلاع منتظم قابلا للاإنشاء بالمسطرة والبركار (الحالة حيث يكون عدد أعداد فيرما الأولية في الجداء المذكور أعلاه مساويا للصفر).

انظر أيضا

عدل

مراجع

عدل
  1. ^ "معلومات عن مضلع منتظم على موقع zthiztegia.elhuyar.eus". zthiztegia.elhuyar.eus. مؤرشف من الأصل في 2019-12-13.
  2. ^ "معلومات عن مضلع منتظم على موقع cultureelwoordenboek.nl". cultureelwoordenboek.nl. مؤرشف من الأصل في 2016-12-08.
  3. ^ "معلومات عن مضلع منتظم على موقع britannica.com". britannica.com. مؤرشف من الأصل في 2015-09-06.

وصلات خارجية

عدل