افتح القائمة الرئيسية

ضرب المصفوفات العاديعدل

عملية الضرب العادية المذكورة هنا هي الأكثر شيوعًا لدى استخدام المصفوفات وأكثرها أهميّة. عملية الضرب هذه تكون معرّفة بين المصفوفتين   و  فقط إذا كان عدد أعمدة الأولى مساويًا لعدد الأسطر في الثانية. أي أنّ العملية معرّفة إذا كانت   من درجة  ، و  من درجة  ، وتكون مصفوفة حاصل الضرب   من درجة  . ووفق نفس المنطق، فإذا تمّ ضرب سلسلة من المصفوفات ذات درجات  ،   و ، فإنّ مصفوفة حاصل الضرب ستكون من درجة  . من هنا، فإنّ ضرب المصفوفات ليست عملية تبديلية على الأطلاق، إذ قد لا يكون الضرب معرفًا أصلاً إذا ما استبدلت المصفوفتان.

في العملية   يتم حساب كل عنصر في مصفوفة حاصل الضرب، بالطريقة الآتية:

 .

أي أنّه لحساب العنصر الواقع في السطر i والعمود j من مصفوفة حاصل الضرب ، يجب حساب الجداء الداخلي للمتجهين المكوّنين من السطر i من المصفوفة الأولى والعمود j من المصفوفة الثانية. ويوضح الرسم التالي تلك العملية :

 

إذ يتحقّق:

 

خواص الضرب العاديعدل

  • ليست عملية ضرب المصفوفات عملية تبديلية عمومًا، وإن كانت العملية التبديلية معرّفة. أي:
 .
  • أحد الاستثنائات بالنسبة للخاصة السابقة هي كون المصفوفتين قطريتين، إذ عندها تكون عملية الضرب تبديلية.
  • إذا كانت المصفوفتان A وB مربّعتين، يتحقّق:
 
أي أنّ عمليّة حساب محدّد حاصل الضرب هي عملية تبديلية.
 .
 ،
 
 .

أشكال أخرى من ضرب المصفوفاتعدل

الضرب بطريقة فالكعدل

مثال على طريقة فالك في ضرب المصفوفات يوضحه ضرب المصفوفتين A و B.

  و   .

لحساب حاصل ضرب المصفوفتين  ، حيث أن للمفصوفة الناتجة الأبعاد:  .

في البداية تتم كتابة المصفوفات بترتيب المصفوفتين التان سيتم ضربهما وفق تصميم فالك. يتم بعدها ضرب عناصر كل صف من المصفوفة السفلية بعناصر كل عمود من المصفوفة الثانية وجميع النتيجة في المصفوفة البينية، الزهرية اللون.

العمود j

1

2

−1

1

الصف i

1

−2

1

1

4

2

2

5

3

3

−6

العمود j

1

2

−1

1

الصف i

1

−2

1

1

4

3

2

2

5

3

3

−6


العمود j

1

2

−1

1

الصف i

1

−2

1

1

4

3

−7

2

2

5

3

3

−6


العمود j

1

2

−1

1

الصف i

1

−2

1

1

4

3

−7

2

2

5

3

−8

3

3

−6

−9

15

ضرب هادامارعدل

ضرب فروبينيوسعدل

ضرب كرونكرعدل

انظر أيضاعدل

مراجععدل

  1. ^ "معلومات عن ضرب المصفوفات على موقع mathworld.wolfram.com". mathworld.wolfram.com. 

وصلات خارجيةعدل