افتح القائمة الرئيسية
القيم الألف الأولى ل (φ(n

في نظرية الأعداد، مؤشر أويلر (بالإنجليزية: Euler's totient function) هو دالة معرفة على مجموعة الأعداد الطبيعية.[1][2][3] تستعمل في الرياضيات الخالصة وفي نظرية المجموعات وفي نظرية الأعداد الجبرية وفي نظرية الأعداد التحليلية. في الرياضيات التطبيقية، مروراً بالحسابيات التوافقية، تلعب دوراً مهماً في نظرية المعلومات وخاصة في التشفير. وتسمى دالة فاي لأويلر أو ببساطة دالة فاي، لأن الحرف φ مستعمل للإشارة لهذه الدالة.

وتحمل اسم الرياضي السوسري أويلر (1707 - 1783) الذي كان أول من درسها.

  • مؤشر أويلر φ هي دالة من مجموعة الأعداد الطبيعية نحو نفس المجموعة, حيث صورة n بالدالة هو عدد الأعداد الأصغر من n والأولية مع n.

مثلا, φ(8) = 4 لأن الأعداد 1, 3, 5 و7 أولية مع 8.

التاريخ والتسمية والرمز المستعلعدل

حساب دالة أويلرعدل

مثالعدل

 

بعض من قيم الدالةعدل

مبرهنة أويلرعدل

تنص هذه المبرهنة على أنه إذا كان a و n عددين طبيعيين أوليين فيما بينهما، فإن:

 

الحالة الخاصة من هذه المبرهنة حينما يكون n أوليا تعرف باسم مبرهنة فيرما الصغرى.

انظر إلى مبرهنة لاغرانج (نظرية الزمر)

صيغ أخرى تحتوي على مؤشر أويلرعدل

الدوال المولدةعدل

نمو دالة مؤشر أويلرعدل

النسبة بين قيمتين متتاليتين لمؤشر أويلرعدل

تطبيقاتعدل

معضلات غير محلحلةعدل

انظر أيضاعدل

مراجععدل

  1. ^ "معلومات عن مؤشر أويلر على موقع britannica.com". britannica.com. مؤرشف من الأصل في 12 سبتمبر 2015. 
  2. ^ "معلومات عن مؤشر أويلر على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 13 يوليو 2019. 
  3. ^ "معلومات عن مؤشر أويلر على موقع oeis.org". oeis.org. مؤرشف من الأصل في 7 مارس 2019. 


وصلات خارجيةعدل

 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.