دالة تامة الشكل

شبكة على شكل مستطيل (في الأعلى) وصورتها بدالة تامة الشكل f (في الأسفل).

في الرياضيات، تعد الدوال التامة الشكل مركزية في دراسة التحليل العقدي. دالة تامة الشكل (بالإنجليزية: Holomorphic function)‏ هي دالة عقدية معرفة في ، يشترط فيها أن تكون قابلة للتفاضل في جوار ما لأي نقطة من مجموعة انطلاقها.[1][2][3]

تعريفعدل

لتكن f دالة قيمها أعداد حقيقية لها متغير واحد. اشتقاق f (أو مشتقة f أو مشتق f) في نقطة z0، تنتمي إلى مجال تعريفها هي النهاية المعرفة بما يلي

 

انظر معادلات كوشي-ريمان.

مصطلحاتعدل

نعت تامة الشكل هي ترجمة لكلمة هولومورفيك (Holomorphic). استعملت لأول مرة من طرف تلميذين لكوشي هما برييوت (1817-1882) وبوكيت (1819-1895).

خصائصعدل

الدوال التامة الشكل المعرفة في جزء مفتوح   من المستوى العقدي   والقابلة للاشتقاق في أي نقطة من تشكل   فضاء داليا ويرمز لها ب  

أمثلةعدل

كل متعددات الحدود اللائي متغيرهن عدد عقدي واللائي معاملاتها أعداد عقدية هي دوال تامة الشكل في C. دالتا الجيب والجيب التمام والدالة الأسية هن أيضا دوال تامة الشكل (بالفعل، ترتبط الدوال المثلثية ارتباطا شديدا بالدوال الأسية حيث يمكن تعريفهن بها. وذلك باستعمال صيغة أويلر). انظر أيضا إلى لوغارتم عقدي.

متغيرات عدةعدل

انظر إلى معادلات كوشي-ريمان.

مراجععدل

  1. ^ "معلومات عن دالة تامة الشكل على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 10 مايو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ "معلومات عن دالة تامة الشكل على موقع babelnet.org". babelnet.org. مؤرشف من الأصل في 19 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ "معلومات عن دالة تامة الشكل على موقع id.ndl.go.jp". id.ndl.go.jp. مؤرشف من الأصل في 13 فبراير 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)

انظر أيضاعدل

 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.