مؤثر تفاضلي

يُعرف عادةً بالمؤثر الخطي بدلالة تفاضل الدوال

في الرياضيات، المؤثر التفاضلي هو المؤثر المعرف كدالة لمؤثر التفاضل. من المفيد اعتبار التفاضل كعملية تجريدية تقبل دالة وترجع دالة أخرى (في نمط دالة ذات ترتيب عالي في علوم الحاسوب).

دالة توافقية محددة في الحلقة. الدوال التوافقية هي بالضبط تلك الدوال التي تكمن في كيرنيل للمؤثر لابلاسي، مؤثر تفاضلي مهم.

الترميزات عدل

المؤثر التفاضلي الأكثر شيوعًا هو عمل أخذ المشتق. تتضمن الترميزات الشائعة لأخذ المشتق الأول بالنسبة للمتغير x :

خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle , {d \over dx}, D,\, D_x\,} و خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle \partial_x} .

يمكننا التعبير عن المشتق من الدرجة n كالتالي:

خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle {d^n \over dx^n},} خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle D^n\,,} خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle D^n_x} أو خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle {\partial_{x}^{n}}{}} .

في بعض الأحيان، يتم تعبير عن مشتق الدالة f للمتغير x كالتالي:

خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle [f(x)]'\,\!}
خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle f'(x).\,\!}

أحد المؤثرات التفاضلية الأكثر شيوعا هو المؤثر لابلاسي، المعرّف بـ:

خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle \Delta=\nabla^{2}=\sum_{k=1}^n {\partial^2\over \partial x_k^2}.}

المؤثر التفاضلي الآخر هو المؤثر Θ، أو المؤثر ثيتا، المعرف بـ:[1]

خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle \Theta = z {d \over dz}.} ، يُسمى هذا أحيانًا مؤثر التجانس.
خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle \Theta (z^k) = k z^k,\quad k=0,1,2,\dots }

نابلا عدل

يعد المؤثر التفاضلي دل (والذي يطلق عليه أيضًا المؤثر نابلا) مؤثر تفاضلي متجهي مهم. يظهر بشكل متكرر في الفيزياء في ميادين مثل الشكل التفاضلي لمعادلات ماكسويل. في الإحداثيات الديكارتية ثلاثية الأبعاد، يعرف نابلا بـ:

خطأ رياضيات (SVG (يمكن تمكين MathML عبر البرنامج المساعد للمتصفح): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "http://localhost:6011/ar.wikipedia.org/v1/":): {\displaystyle \nabla = \mathbf{\hat{x}} {\partial \over \partial x} + \mathbf{\hat{y}} {\partial \over \partial y} + \mathbf{\hat{z}} {\partial \over \partial z}.}

يعرّف نابلا التدرج، ويستخدم لحساب الدوران، والتباعد، ولابلاسيان للعديد من الكائنات.

المراجع عدل

  1. ^ E. W. Weisstein. "Theta Operator". مؤرشف من الأصل في 2019-12-23. اطلع عليه بتاريخ 2009-06-12.