مثالي (نظرية الحلقات)

في نظرية الحلقات، و هي فرع من الجبر التجريدي، المثالي (بالإنجليزية: Ideal)‏ مجموعة جزئية خاصة من حلقة تحقق عددا من الشروط.[1][2][3] و يعمم مفهوم المثالي مفهوم بعض المجموعات الجزئية من مجموعة الأعداد الصحيحة كمجموعة الأعداد الزوجية أو مجموعة مضاعفات العدد 3. جمع وطرح الأعداد الزوجية يعطيان دائما عددا زوجيا، وضرب عدد زوجي في عدد صحيح ما يعطي دائما عددا زوجيا. هذان الخاصيتان المتمثلتان في الانغلاق والمص هما اللتان تعرفان مفهوم المجموعة المثالية.

التاريخعدل

أول من اقترح مفهوم المثاليين هو ريتشارد ديدكايند. ولقد كان ذلك عام 1876 خلال نشره للطبعة الثالثة لكتابه قراءات حول نظرية الأعداد.

تعريفاتعدل

نظرا إلى حلقة  ، ليكن   الزمرة الجمعية المرتبطة بها. تدعى مجموعة جزئية   مثاليا من جهتين (أو ببساطة مثاليا) ل R إذا كانت زمرة جمعية جزئية من R "تمتص الضرب في عناصر R". بشكل رسمي، تكون   مثاليا من R إذا توفر ما يلي:

  1.   هو زمرة جزئية من  
  2.  
  3.  

خصائصعدل

{0} و R مثاليان من كل حلقة R، وإذا كانت R حلقة قسمة أو حقلا فإن هذين هما مثالياها الوحيدان.

أمثلةعدل

  • الأعداد الزوجية تشكل مثاليا للحلقة  .

أنواع المثاليينعدل

انظر أيضاعدل

مراجععدل

 
هذه بذرة مقالة عن موضوع له علاقة بالجبر بحاجة للتوسيع. شارك في تحريرها.
  1. ^ "معلومات عن مثالي (نظرية الحلقات) على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 3 يوليو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ "معلومات عن مثالي (نظرية الحلقات) على موقع babelnet.org". babelnet.org. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ "معلومات عن مثالي (نظرية الحلقات) على موقع id.loc.gov". id.loc.gov. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)