افتح القائمة الرئيسية

قوانين مساحة المثلث

Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016)

في الهندسة الرياضية، تعطى مساحة المثلث بالقانون:

المساحة = ½×طول القاعدة × الارتفاع

يقصد بالقاعدة أحد أضلاع المثلث و يقصد بالارتفاع العمود النازل من الرأس على القاعدة أو على امتدادها.

لاثبات ما سبق يحول المثلث إلى متوازي أضلاع مساحته ضعف مساحة المثلث،

و بعدها يحول إلى مستطيل طوله قاعدة المثلث و عرضه ارتفاع المثلث.

حساب مساحة المثلث هندسيا

و من هذا القانون تستنتج قوانين مساحة المثلث الأخرى.

قوانين المساحة للمثلثعدل

القانون الأولعدل

 
المثلث ABC.

يربط بين مساحة المثلث وبين جيب إحدى زواياه.

 

البرهان:

في المثلث ABC: القطعة المستقيمة AN ارتفاع و a,b,c أطوال أضلاع المثلث.

المثلث ANC مثلث قائم في N:

 

(جيب الزاوية يساوي المقابل على الوتر في المثلث القائم)

 

 

القانون الثانيعدل

 
دائرة محيطة بالمثلث

يوضح علاقة مساحة المثلث بنصف قطر الدائرة المحيطة به R.

 

البرهان:

باستخدام قانون الجيوب:

 

 

 

القانون الثالثعدل

 
دائرة داخلية في المثلث ABC

يربط بين مساحة المثلث و نصف قطر الدائرة الداخلية r و نصف المحيط s.

 

البرهان:

P مركز الدائرة الداخلية للمثلث

 

باستخدام "المساحة = ½ القاعدة × الارتفاع" ثلاث مرات:

 

 

القانون الرابععدل

يعرف بصيغة هيرو:

باعتبار أن a,b,c اطوال اضلاع المثلث قيم معلومة، فإن مساحة المثلث هي:

 

حيث أن s نصف محيط المثلث.

القانون الخامسعدل

يعرف بصيغة جيوشاو:

 

القانون السادسعدل

مساحة المثلث القائم بدلالة طول الوتر والمحيط تُعطى بالعلاقة : المساحة = ( 1 / 4 ) [ (المحيط)^2 - 2 × المحيط × طول الوتر ]

اقرأ أيضاًعدل