جداء مباشر للزمر

Question book-new.svg
تعرَّف على طريقة التعامل مع هذه المسألة من أجل إزالة هذا القالب.يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوقة. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2020)

في الرياضيات، وتحديداً في نظرية الزمر، الجداء المباشر هو عملية تطبق على زمرتين G و H وتُنشئ زمرة جديدة، يرمز لها عادةً ب G × H هذه العملية على الزمر نظرياً مشابهة للجداء الديكارتي للمجموعات وهي واحدة من بين العديد من المفاهيم المهمة للجداء المباشر في الرياضيات.

في سياق الزمرة الأبيلية، يشار إلى الجداء المباشر في بعض الأحيان على أنه مجموع مباشر، ويرمز إليه ب. تلعب المجاميع المباشرة دورًا مهمًا في تصنيف الزمر الأبيلية (التبادلية): وفقًا للنظرية الأساسية للزمر الأبيلية المنتهة، يمكن التعبير عن كل زمرة أبيلية منتهية كمجموع مباشر من الزمر الدائرية .

تعريفعدل

نضع الزمرتيينG (مع العملية *) و H (مع العملية ∆)، نُعَرِّفُ الجداء المباشر G × H على النحو التالي:

  1. المجموعة الكامنة، الجداء الديكارتي G × H له زوج مرتب (g, h), مع gG و hH.
  2. العملية الثنائية على G × H تُعرف بما يلي:
    (g1, h1) · (g2, h2) = (g1 * g2, h1h2)

المراجععدل


  • Artin, Michael (1991), Algebra, برنتيس هول  [لغات أخرى], ISBN 978-0-89871-510-1 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  • Herstein, Israel Nathan (1996), Abstract algebra (الطبعة 3rd), Upper Saddle River, NJ: Prentice Hall Inc., ISBN 978-0-13-374562-7, MR = 1375019 1375019 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link).
  • Herstein, Israel Nathan (1975), Topics in algebra (الطبعة 2nd), Lexington, Mass.: Xerox College Publishing, MR = 0356988 0356988 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link).
  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
  • Lang, Serge (2005), Undergraduate Algebra (الطبعة 3rd), Berlin, New York: سبرنجر, ISBN 978-0-387-22025-3 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link).
  • Robinson, Derek John Scott (1996), A course in the theory of groups, Berlin, New York: سبرنجر, ISBN 978-0-387-94461-6 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link).
 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.