افتح القائمة الرئيسية
N write.svg
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. (نوفمبر 2011)

في الهندسة الجبرية، المنحني الجبري هو مسار بين نقطتين (منحني مفتوح) او نقطة واحدة (منحني مغلق)، وتعبر عن تعويض لمعادلة رياضية في متغيرين او أكثر .[1][2][3] والدائرة حالة خاصة من المنحني ويعبر عنها بالمعادلة س2 + ص2 - 1 = 0 .

محتويات

في الهندسة الاقليديةعدل

المنحني هو عدد لا نهائي من النقط المتلاسقة والتي تعبر عن حل معادلة في متغيرين او أكثر.

انواع المنحنيات (في الفراغ)عدل

  • ثنائي الابعاد : يرسم علي المحاور المتعامدة (س) و(ص)، او المحاور الدائرية (ر) و(θ)، حيث ر هي المسافة بين نقطة علي المنحني ونقطة الاصل (ر = 0)، و(θ) هي الزاوية بين خط الاساس (مماثل للمحور (س) في حالة المحاور المتعامدة) والخط الواصل بين تقطة علي المنحني ونقطة الاصل.
  • ثلاثي الابعاد : يرسم في الابعاد الثلاثة (س) و(ص) و(ع)، او المحاور الدائرية (ر)، (θ) و(Φ).
  • رباعي الابعاد أو أكثر : منحني تخيلي لا يمكن رسمه في الفراغ ولكنه قد يعبر عن علاقات رياضية.

ميل المنحني عند نقطةعدل

هي الزاوية بين المماس للمنحني عند نقطة ما والاتجاه الموجب لمحور السينات، وهي أيضا التفاضل الأول للدالة التي تعبر عن المنحني.

درجة المنحنيعدل

يسمي المنحني بحسب درجته ،درجة المنحني هي اعلي قوي اسّية في عناصره.

منحني الدرجة الأولي

وهو يعبر عن علاقة خطيّة بين المنغير (س) والمتغير (ص) مثال : س = ص (خط مستقيم مائل بزاوية 45 درجة يمر بنقطة الاصل).

منحني الدرجة الثانية

يكتب علي الصيغة y = ax2 +b x + c

أنواع أخرى من المنحنياتعدل

انظر أيضاعدل

مراجععدل

 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.
  1. ^ "معلومات عن منحنى جبري على موقع mathworld.wolfram.com". mathworld.wolfram.com. 
  2. ^ "معلومات عن منحنى جبري على موقع id.loc.gov". id.loc.gov. 
  3. ^ "معلومات عن منحنى جبري على موقع britannica.com". britannica.com.