افتح القائمة الرئيسية

في نظرية الاحتمالات، دالة الكثافة الاحتمالية (د.[1]ك.ا) (بالإنجليزية: probability density function) أو (pdf) هي الدالة الممثلة لأي توزيع احتمالي عن طريق التكامل. وتكون دالة الكثافة الاحتمالية موجبة دائمًا، كما يكون تكاملها من ∞- إلى ∞+ مساويًا لواحد:

يمكن وصف دالة الكثافة الاحتمالية بأنها تقويم لاستمرارية منسّج الذي يمثل التكرارات النسبية ضمن مجالات النتائج البيانية.

محتويات

توزيعات مستمرة بمتغير واحدعدل

تكون للمتغير العشوائي   دالة كثافة احتمالية  ، حيث قيم هذه الدالة غير سالبة وهي قابلة للتكامل حسب ليبيغ، إذا ما تحقّق :

 

أي أنّ الاحتمال بأن يتخذ المتغير   قيمًا في الفترة   مساوية لتكامل دالة الكثافة الاحتمالية في نفس الفترة. من هنا، فإذا كانت   هي دالة التوزيع التراكمي للمتغير  ، يتحقق:

 

وكذلك، فإنّ:

 

من هنا، فإذا كان لدينا توزريعًا احتماليًا له كثافة  ، عندئذ يكون الاحتمال للحصول على قيم في المجال اللامتناهي   هو  .

دوال كثافة احتمالية مهمةعدل

  • التوزيع المنتظم هو أحد أكثر التوزيعات أهمية واستعمالاً. في صيغته المستمرة نقول أنّ للمتغيّر العشوائي X توزيعًا منتظمًا في الفترة   إذا كان احتمال حصول X على قيمة ما في فترة جزئية محتواة في الفترة   مساويًا لاحتمال حصوله على قيمة ما في فترة جزئية أخرى محتواة في الفترة  ، بشرط أن تكون الفترتان بنفس الطول. هذا يقضي بأن يكون لـX نفس الكثافة الاحتمالية على طول الفترة  ، أي:
 
 
هذا في حالة كون المتغيّر عشوائي تابعا لتوزيع طبيعي معياري، أي أنّه ذو قيمة متوقّعة مساوية لصفر، وتباين مساوٍ لواحد. أمّا إذا كانت القيمة المتوقعة مساوية لـ-  والتباين مساويًا لـ-  تكتب دالة الكثافة الاحتمالية كالتالي:
 

استعمالاتعدل

 
أي أنّ القيمة المتوقعة لمتغيّر عشوائي هي عبارة عن مركز ثقل دالة الكثافة الاحتمالية خاصته.

انظر أيضًاعدل

مراجععدل

  1. ^ "معلومات عن دالة الكثافة الاحتمالية على موقع mathworld.wolfram.com". mathworld.wolfram.com.