ثلاثية فيثاغورس
تتألف ثلاثية فيثاغورس من الأعداد الصحيحة a و b و c حيث a2 + b2 = c2.[1][2][3]
تكتب الثلاثية على الشكل (a, b, c) ومن الأمثلة الشهيرة عليها هي (5, 4, 3). إذا كانت (a, b, c) هي ثلاثية فيثاغورسية فإن (ka, kb, kc) من أجل أي عدد صحيح k تكون أيضاً ثلاثية فيثاغورسية. تكون الأعداد المشكلة لثلاثية فيثاغورس a, b و c أولية فيما بينها.
تم أخذ الاسم من مبرهنة فيثاغورس حيث تكون كل ثلاثية فيثاغورس حلاً لمبرهنة فيثاغورس.
أمثلةعدل
هناك ست عشر ثلاثية فيثاغورس حيث c ≤ 100:
(3, 4, 5) | (5, 12, 13) | (8, 15, 17) | (7, 24, 25) |
(20, 21, 29) | (12, 35, 37) | (9, 40, 41) | (28, 45, 53) |
(11, 60, 61) | (16, 63, 65) | (33, 56, 65) | (48, 55, 73) |
(13, 84, 85) | (36, 77, 85) | (39, 80, 89) | (65, 72, 97) |
برهان على صيغة أقليدسعدل
انظر أيضاًعدل
مراجععدل
- ^ "معلومات عن ثلاثية فيثاغورس على موقع d-nb.info". d-nb.info. مؤرشف من الأصل في 2019-12-15.
- ^ "معلومات عن ثلاثية فيثاغورس على موقع thes.bncf.firenze.sbn.it". thes.bncf.firenze.sbn.it. مؤرشف من الأصل في 2019-10-07.
- ^ "معلومات عن ثلاثية فيثاغورس على موقع britannica.com". britannica.com. مؤرشف من الأصل في 2017-03-20.
- Thomas Heath, The Thirteen Books of Euclid's Elements Vol. 1 (Books I and II), Dover Publications; 2nd edition (June 1, 1956) ISBN 0-486-60088-2
- واكلاو سيربنسكي, Pythagorean Triangles, Dover Publications, 2003. ISBN 0-486-43278-5
- Martin, Artemas (1875). "Rational right angled triangles nearly isosceles". حوليات الرياضيات. ج. 3 ع. 2: 47–50. DOI:10.2307/2635906. مؤرشف من الأصل في 2021-05-23.
في كومنز صور وملفات عن: ثلاثية فيثاغورس |