افتح القائمة الرئيسية
رسم يوضح المخطط المستوي المكون من أربع حلقات.

في المخططات، المخطّط المستوي هو المخطّط الذي يقبل تمثيلا في المستوى، بحيث لا يتقاطع أي حرفين من المخطّط.[1][2][3]

معايير المخطّط المستويعدل

حسب كوراتوفسكي, يكون المخطط مستويا إذا لم يتضمن زمرة من الرتبة الخامسة، أو مخططا ثنائيا كاملا من الرتبة الثالثة.

وجوه مخطط مستويعدل

ليكن G مخططا مستويا، الوجه F هو أكبر منطقة من المستوى محدّدة بمجموعة حروف G ولا تتضمن أيا منها.

ليكن G مخطّطا مستويا، و a عدد حروف G. إذن :  

صيغة أويلرعدل

تعاريفعدل

  • المسار ذو الطول r هو سلسلة   من القمم المرتبطة مع   أصل السبيل و  طرفه.
  • يكون المخطّط متّصلا إذا وُجد مسار بين كل قمتين من G.
  • المسار المغلق هو حالة  .
  • الشجرة هي مخطط متّصل بدون أي مسار مغلق.

تمهيدةعدل

كل مخطّط متّصل يمكن الحصول عليه بإضافة عدّة قمم لشجرة (لها نفس عدد القمم).

صيغة أويلر للمخطّطات المستوية المتّصلةعدل

ليكن G مخطّط مستوي متّصل. ليكن n عدد قمم a, G عدد حروفه و f عدد وجوهه. إذن: n − a + f = 2

المعاييرعدل

تحديد المعايير التي تمكّن من معرفة ان كان مخطّط ما مستويا. ليكن G مخطّط مستوي متّصل. ليكن n عدد قمم a, G عدد حروفه:

  1.   في حالة وجود مثلّثات.
  2.   في حالة عدم وجود مثلّثات.

مميّزة كوراتوفسكيعدل

الرياضي البولوني كوراتوفسكي وضع الميّزة التالية للمخطّطات المستوية :

يكون المخطّط مستويا إذا وفقط إذا لم يتضمّن مخطّطا جزئيّا عبارة عن تمديد ل K5 (زمرة ب 5 قمم) أو K3,3 (المخطّط ثنائي كامل ب3+3 رؤوس).

'التمديد بالنّسبة لمخطّط هو نتيجة إضافة قـمّة أو أكثر لحرف أو عدّة حروف (مثلا, تحويل الحرف•——• إلى •—•—•).

مراجععدل

  1. ^ Trudeau، Richard J. (1993). Introduction to Graph Theory (الطبعة Corrected, enlarged republication.). New York: Dover Pub. صفحة 64. ISBN 978-0-486-67870-2. اطلع عليه بتاريخ 08 أغسطس 2012. Thus a planar graph, when drawn on a flat surface, either has no edge-crossings or can be redrawn without them. 
  2. ^ Bonichon، N.؛ Gavoille، C.؛ Hanusse، N.؛ Poulalhon، D.؛ Schaeffer، G. (2006). "Planar Graphs, via Well-Orderly Maps and Trees". Graphs and Combinatorics. 22: 185–202. CiteSeerX 10.1.1.106.7456 . doi:10.1007/s00373-006-0647-2. 
  3. ^ Giménez، Omer؛ Noy، Marc (2009). "Asymptotic enumeration and limit laws of planar graphs". Journal of the American Mathematical Society. 22: 309–329. arXiv:math/0501269 . doi:10.1090/s0894-0347-08-00624-3.