مبرهنة ليوفيل (ميكانيك هاملتوني)

مبرهنة ليوفيل مبرهنة رياضياتية للعالم والرياضياتي الفرنسي جوزيف ليوفيل وهي مبرهنة رياضية تعطي معادلة تربط بين تطور حجم volume مجموعة نقاط مبدئية (initial condition) لنظام معين (system) في الزمن وهذا الحجم.[1][2]


الحجم في فضاء يتجاوز بعده 3عدل

لنفرض أنه لدينا مجموعة نقاط   حجم هذه المجموعة في فضاء بعده n يمكن فهمه على أنه دالة نسميها   من ال   وهي دالة تنسب لكل مجموعة من حجمها. ومن البديهي أنه على هذه الدالة أن تكون موجبة دائما حيث أنه لا وجود لحجم سالب. وبهذا يكون حجم المجموعة  :

 

مبرهنة ليوفيلعدل

فلنفرض أنه لدينا النظام التالي:

 

و مجموعة من النقاط البدئية   يمكن أن ننسب لها حجما

 

و إذا فرضنا أن   هي مجموعة حلول النظام the set of the flows فإن مبرهنة ليوفيل تقول ما يلي:

 

حيث  

مراجععدل

  1. ^ pp. 16. نسخة محفوظة 29 أغسطس 2016 على موقع واي باك مشين.
  2. ^ Gibbs، Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons. 
 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.