تربيع غاوسي

طريقة التكامل
Question book-new.svg
تعرَّف على طريقة التعامل مع هذه المسألة من أجل إزالة هذا القالب.تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوقة. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها.
مقارنة بين التربيع الغاوسي ثنائي النقاط والتربيع شبه المنحرفي. quadrature.
مقارنة بين التربيع الغاوسي ثنائي النقاط والتربيع شبه المنحرفي. المنحنى الأزرق هو كثير الحدود معادلته ، التي تكاملها في [−1, 1] يساوي 23. تُرجع قاعدة شبه المنحرف تكامل الخط البرتقالي المتقطع، مساوٍ لـ . تُرجع قاعدة التربيع الغاوسية المكونة من نقطتين تكامل المنحنى الأسود المتقطع، مساوٍ لـ . هذه النتيجة دقيقة، حيث أن المنطقة الخضراء لها نفس مساحة مجموع المناطق الحمراء.

في التحليل العددي، تعد قاعدة التربيع تقريبًا للتكامل المحدد للدالة، وعادة ما يتم ذكرها كمجموع مرجح لقيم الدالة عند نقاط محددة داخل مجال التكامل. قاعدة التربيع الغاوسية متعدد النقاط (n نقطة)، المسماة باسم كارل فريدريش غاوس،[1] هي قاعدة تربيعية تم إنشاؤها لتحقيق نتيجة دقيقة لكثيرة الحدود من الدرجة 2n − 1 أو أقل من خلال اختيار مناسب للعقد xi والأوزان wi لـ i = 1،…، n. طوِّرت الصيغة الحديثة باستخدام كثيرات الحدود المتعامدة من قبل كارل غوستاف جاكوبي 1826. يتم أخذ المجال الأكثر شيوعًا للتكامل لمثل هذه القاعدة على النحو [−1 ، 1]، [2]لذلك تم ذكر القاعدة على أنها

والتي تكون مضبوطة بالنسبة لكثيرات الحدود من الدرجة 2n − 1 أو أقل. تُعرف هذه القاعدة المضبوطة باسم قاعدة غاوس-ليجاندر التربيعية. ستكون قاعدة التربيع فقط تقريبًا دقيقًا للتكامل أعلاه إذا تم تقريب f(x) بشكل جيد بواسطة كثير الحدود من الدرجة 2n − 1 أو أقل في [−1, 1].

مراجععدل

  1. ^ Methodus nova integralium valores per approximationem inveniendi. In: Comm. Soc. Sci. Göttingen Math. Band 3, 1815, S. 29–76, Gallica, datiert 1814, auch in Werke, Band 3, 1876, S. 163–196. نسخة محفوظة 12 يوليو 2019 على موقع واي باك مشين.
  2. ^ ريتشارد ل; فايرس, ج دوغلاس (2014-08-19). التحليل العددي. العبيكان للنشر. ISBN 978-603-503-506-4. مؤرشف من الأصل في 18 يوليو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)

انظر أيضاعدل

 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.