ملف:VFPt metal balls largesmall potential.svg

الملف الأصلي(ملف SVG، أبعاده 800 × 600 بكسل، حجم الملف: 156 كيلوبايت)

ملخص

الوصف
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V.
التاريخ
المصدر عمل شخصي
المؤلف Geek3
إصدارات أخرى
SVG منشأ الملف
InfoField
 
The source code of this SVG is invalid due to VectorFieldPlot errors.
 
, or with something else.هذا الرسم المتجهي أُنشئ بواسطة Inkscape
 
This file uses embedded text.
قُيمت هذه الصُّورة باستخدام المبادئ التوجيهيَّة للصُّور ذات الجودة، وهي صورةٌ جيّدةٌ.

العربية  جازايرية  беларуская  беларуская (тарашкевіца)  български  বাংলা  català  čeština  Cymraeg  Deutsch  Schweizer Hochdeutsch  Zazaki  Ελληνικά  English  Esperanto  español  eesti  euskara  فارسی  suomi  français  galego  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  italiano  日本語  Jawa  ქართული  한국어  kurdî  Lëtzebuergesch  lietuvių  македонски  മലയാളം  मराठी  Bahasa Melayu  Nederlands  Norfuk / Pitkern  polski  português  português do Brasil  rumantsch  română  русский  sicilianu  slovenčina  slovenščina  shqip  српски / srpski  svenska  தமிழ்  తెలుగు  ไทย  Tagalog  Türkçe  toki pona  українська  vèneto  Tiếng Việt  中文  中文(简体)  中文(繁體)  +/−

نص برمجي مصدري
InfoField

SVG code

# paste this code at the end of VectorFieldPlot 1.10
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_potential',
    commons=True, width=800, height=600, center=[400, 300], unit=u)

# define two spheres with position, radius and charge
s1 = {'p':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'p':sc.array([2.0, 0.]), 'r':0.5}

# make charge proportional to capacitance, which is proportional to radius.
s1['q'] = s1['r']
s2['q'] = -s2['r']
d = vabs(s2['p'] - s1['p'])
v12 = (s2['p'] - s1['p']) / d

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
charges = [[s1['p'][0], s1['p'][1], s1['q']], [s2['p'][0], s2['p'][1], s2['q']]]
r1 = r2 = 0.
q1, q2 = s1['q'], s2['q']
q0 = max(fabs(q1), fabs(q2))
for i in range(10):
    q1, q2 = -s1['r'] * q2 / (d - r2), -s2['r'] * q1 / (d - r1), 
    r1, r2 = s1['r']**2 / (d - r2), s2['r']**2 / (d - r1)
    p1, p2 = s1['p'] + r1 * v12, s2['p'] - r2 * v12
    charges.append([p1[0], p1[1], q1])
    charges.append([p2[0], p2[1], q2])
    if max(fabs(q1), fabs(q2)) < 1e-3 * q0:
        break

field = Field({'monopoles':charges})

# draw potential in background
p_array = sc.array([c[:2] for c in charges])
q_array = sc.array([c[2] for c in charges])
def potential(xy):
    return sc.dot(q_array, 1. / sc.linalg.norm(xy - p_array, axis=1))

from matplotlib import colors
# colormap from aqua through yellow to fuchsia
cmap = colors.ListedColormap([sc.clip((2*x, 2*(1-x), 4*(x-0.5)**2), 0, 1)
    for x in sc.linspace(0., 1., 2048)])

doc.draw_scalar_field(func=potential, cmap=cmap,
    vmin=potential(s2['p'] + s2['r'] * sc.array([1., 0.])),
    vmax=potential(s1['p'] + s1['r'] * sc.array([-1., 0.])))

# draw symbols
for c in charges:
    doc.draw_charges(Field({'monopoles':[c]}), scale=0.6*sqrt(fabs(c[2])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ccc', 0.75),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib in range(2):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*([s1, s2][ib]['p'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['p'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['p'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':[s1, s2][ib]['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

# find well-distributed start positions of field lines
def get_startpoint_function(startpath, field):
    '''
    Given a vector function startpath(t), this will return a new
    function such that the scalar parameter t in [0,1] progresses
    indirectly proportional to the orthogonal field strength.
    '''
    def dstartpath(t):
        return (startpath(t+1e-6) - startpath(t-1e-6)) / 2e-6
    def FieldSum(t0, t1):
        return ig.quad(lambda t: sc.absolute(sc.cross(
            field.F(startpath(t)), dstartpath(t))), t0, t1)[0]
    Ftotal = FieldSum(0, 1)
    def startpos(s):
        t = op.brentq(lambda t: FieldSum(0, t) / Ftotal - s, 0, 1)
        return startpath(t)
    return startpos

startp = []
def startpath1(t):
    phi = 2. * pi * t
    return (sc.array(s2['p']) + 1.5 * sc.array([cos(phi), sin(phi)]))
start_func1 = get_startpoint_function(startpath1, field)
nlines1 = 16
for i in range(nlines1):
    startp.append(start_func1((0.5 + i) / nlines1))

def startpath2(t):
    phi = 2. * pi * (0.195 + 0.61 * t)
    return (sc.array(s1['p']) + 1.5 * sc.array([cos(phi), -sin(phi)]))
start_func2 = get_startpoint_function(startpath2, field)
nlines2 = 14
for i in range(nlines2):
    startp.append(start_func2((0.5 + i) / nlines2))

# draw the field lines
for p0 in startp:
    line = FieldLine(field, p0, directions='both', maxr=7.)
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./u, 4./u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./u, 4./u)
    for si in range(2):
        sphere = [s1, s2][si]
        
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if vabs(line.get_position(ci) - sphere['p']) < sphere['r']:
                # find the point where the field line cuts the surface
                t = op.brentq(lambda t: vabs(line.get_position(t)
                    - sphere['p']) - sphere['r'], 0., 1.)
                pr = line.get_position(t) - sphere['p']
                cpos = 0.9 * sphere['r'] * pr / vabs(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=ball_charges[si])
    
    arrow_d = 2.0
    of = [0.5 + s1['r'] / arrow_d, 0.5, 0.5, 0.5 + s2['r'] / arrow_d]
    doc.draw_line(line, arrows_style={'dist':arrow_d, 'offsets':of})
doc.write()

ترخيص

أنا، صاحب حقوق التأليف والنشر لهذا العمل، أنشر هذا العمل تحت الرخصة التالية:
w:ar:مشاع إبداعي
نسب العمل إلى مُؤَلِّفه الإلزام بترخيص المُشتقات بالمثل
يحقُّ لك:
  • مشاركة العمل – نسخ العمل وتوزيعه وبثُّه
  • إعادة إنتاج العمل – تعديل العمل
حسب الشروط التالية:
  • نسب العمل إلى مُؤَلِّفه – يلزم نسب العمل إلى مُؤَلِّفه بشكل مناسب وتوفير رابط للرخصة وتحديد ما إذا أجريت تغييرات. بالإمكان القيام بذلك بأية طريقة معقولة، ولكن ليس بأية طريقة تشير إلى أن المرخِّص يوافقك على الاستعمال.
  • الإلزام بترخيص المُشتقات بالمثل – إذا أعدت إنتاج المواد أو غيرت فيها، فيلزم أن تنشر مساهماتك المُشتقَّة عن الأصل تحت ترخيص الأصل نفسه أو تحت ترخيص مُتوافِقٍ معه.

الشروحات

أضف شرحاً من سطر واحد لما يُمثِّله هذا الملف

العناصر المصورة في هذا الملف

يُصوِّر

٣٠ ديسمبر 2018

تاريخ الملف

اضغط على زمن/تاريخ لرؤية الملف كما بدا في هذا الزمن.

زمن/تاريخصورة مصغرةالأبعادمستخدمتعليق
حالي20:05، 30 ديسمبر 2018تصغير للنسخة بتاريخ 20:05، 30 ديسمبر 2018800 × 600 (156 كيلوبايت)Geek3User created page with UploadWizard

الصفحة التالية تستخدم هذا الملف:

الاستخدام العالمي للملف

الويكيات الأخرى التالية تستخدم هذا الملف:

بيانات وصفية