افتح القائمة الرئيسية

في الهندسة الرياضية، تقوم معادلة براهماغوبتا بإيجاد مساحة أي رباعي أضلاع بواسطة طول أضلاعه وقياس بعض زواياه.[1]

بشكلها الأكثر شيوعاً تقوم المعادلة بحساب معادلة رباعي الأضلاع المحصور ضمن دائرة (رباعي دائري).

محتويات

الصيغة البسيطةعدل

أبسط صيغة لصيغة براهماغوبتا هي الصيغة التي تعطى في الرباعي الدائري الذي أطوال أضلاعهa, b, c, d على الشكل التالي:

 

حيث s تعطى بالعلاقة:  

وهي تعميم لمعادلة هيرون لحساب مساحة المثلث.

البرهانعدل

لتكن   هي مساحة الرباعي جانبه.   هي مجموع مساحتي المثلثين   و   إذن

 

بما أن   رباعي دائري فإن DAB = 180° − ∠DCB و منه فإن sin A = sin C، و منه:  .

إذن  

بتطبيق قانون جيب التمام نستنتج أن:

 

نعوض cos C = −cos A، لدينا  

نعوض في متساوية المساحة،

 

 
 
 

نأخذ  ، فنجد

 

 

انظر أيضاًعدل

مراجععدل

  1. ^ Maley، F. Miller؛ Robbins، David P.؛ Roskies، Julie (2005). "On the areas of cyclic and semicyclic polygons" (PDF). Advances in Applied Mathematics. 34 (4): 669–689. doi:10.1016/j.aam.2004.09.008. 

وصلات خارجيةعدل