مسلمات هلبرت

بديهيات هلبرت (بالإنجليزية: Hilbert's axioms)‏ هي مجموعة من عشرين مسلمة وضعت من قبل ديفيد هلبرت خصيصا لتشكل أساس المعالجة الحديثة للهندسة الإقليدية.[1][2][3] نشرت هذه المسلمات أول مرة في كتاب أسس الهندسة عام 1899. من المسلمات الأخرى المستعملة في الهندسة المستوية : مسلمات تارسكي ومسلمات بيركوف. وقد قدم هلبرت هذه المسلمات في خمس مجموعات. ضمت المجموعة الأولى مسلمات تجميعية، واشتملت المجموعة الثانية على مسلمات ترتيبية والمجموعة الثالثة على مسلمات الموافقة والمجموعة الرابعة على مسلمات الاتصال والمجموعة الخامسة والأخيرة على مسلمة التوازي.

مراجععدل

  1. ^ Moore, E.H. (1902), "On the projective axioms of geometry" (PDF), Transactions of the American Mathematical Society, 3: 142–158, doi:10.2307/1986321, مؤرشف من الأصل (PDF) في 3 مايو 2019 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  2. ^ Gronwall, T. H. (1919). "Review: Grundlagen der Geometrie, Fourth edition, Teubner, 1913" (PDF). Bull. Amer. Math. Soc. 20 (6): 325–326. doi:10.1090/S0002-9904-1914-02492-9. مؤرشف من الأصل (PDF) في 2 مايو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ Sommer, Julius (1900). "Review: Grundlagen der Geometrie, Teubner, 1899" (PDF). Bull. Amer. Math. Soc. 6 (7): 287–299. doi:10.1090/s0002-9904-1900-00719-1. مؤرشف من الأصل (PDF) في 4 مارس 2016. الوسيط |CitationClass= تم تجاهله (مساعدة)

وصلات خارجيةعدل


 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.