مستخدم:Elsayed Taha/عدد طبيعي

تاريخ عدل

الجذور القديمة عدل

 
يُعتقد أن عظمة إشانغو (معروضة في المعهد الملكي البلجيكي للعلوم الطبيعية)[1] [2] كانت مستخدمة في الحسابات منذ 20000 سنة.

في البدايات مُثِلَت الأرقام الطبيعية عن طريق وضع علامة للشيء المعدود. منها تطور لمقارنة الأشياء المعدودة بأخرى لمعرفة الزيادة والنقصان أو المساواة - عن طريق حذف شيء وشطب علامته أو إضافة آخر مع علامة له وهكذا[3][4].

شكل نظام العد خطوة هامة في تطور تمثيل الأرقام، لأنه مَكَّنَ الانسان من تسجيل أعداد كبيرة.

فالمصريون القدماء كان لديهم نظام عد استخدم رموزا هيروغليفية مختلفة لتمثيل 1 و10 وجميع القوى من 10 لأكثر من 1مليون. فهناك نقش حجري في الكرنك يعود تاريخه إلى حوالي 1500قبل الميلاد (الآن في متحف اللوفر)، مثل فيه الرقم 276 كـ 2 من فئة المئات، و7 من فئة العشرات و 6 من فئة الآحاد. وبنفس الطريقة للرقم 4622.

والبابليون كان لديهم نظام عد قيمة الموضع اعتمد على الأرقام من 1 إلى 10، مستخدما قاعدة ستينية، وفيه رمز العدد 60 هو نفس رمز العدد 1 ويميز بينهم السياق.[5]

لاحقا تطور نظام العد ليشمل تخصيص رمز للصفر باعتباره رقم. استخدام رقم للصفر في نظام القيمة الموضعية يعود للبابليين حوالي 700 ق. م.، حيث حذفوا هذا الرقم لو كان آخر رقم في العدد.[أ]

استخدمت حضارات الأولمك والمايا الصفر كرقم حوالي بدايات القرن 1 ق م، لكنه لم ينتشر خارج أمريكا الوسطى.[7][8]

في العصر الحديث بدأ استخدام الصفر مع عالم الرياضيات الهندي براهماجوبتا حوالي 628 م. ولكن مع ذلك، استخدم ديونيسيوس الصغير في 525 م الصفر كرقم لحساب عيد الفصح، دون أن يُشار له كرقم (حيث لا تتضمن الأرقام الرومانية القياسية رمز الصفر). واستخدمت مكانه كلمة nulla (أو صيغة المضاف nullae) من nullus ، وتعني باللاتينية "لا شيء"، للإشارة لقيمة الصفر.[9]

أول دراسة منهجية للأرقام كمفهوم مجرد تُنسب عادة للفلاسفة اليونانيين فيثاغورس وأرخميدس. اعتبر بعض علماء الرياضيات اليونانيين أن الرقم 1 يختلف عن الأعداد الأكبر منه، وأحيانًا لا يعتبر كعدد.[ب] ، مثلًا عرّف إقليدس أولًا الوحدة

  الوحدة شيء به يمتنع الموجود عن الانقسام الى اشيآء تشاركه في تمام ذاتياته[11]  

، وبالتالي وفقًا لتعريفه، فإن الوحدة (الرقم 1) ليست عددًا، ويعرف العدد على أنه الكمية المؤلفة من الوحدات.[12]

كما دُرِسَتْ الأرقام تقريبًا في نفس الوقت في الهند والصين وأمريكا الوسطى.[13]

التعريفات الحديثة عدل

في القرن التاسع عشر في أوروبا، كان هناك نقاش رياضي وفلسفي حول ماهية الأعداد الطبيعية. على سبيل المثال هنري بوانكاريه ممثلا للفلسفة الطبيعانية نَقَدَ تعريف الرياضيون (كـ فريجه، وديدكايند، وراسل) الأرقام منطقيًا لأنه سيؤدي لتناقضات والوقوع في فخ التعريفات الدائرية، بدلا من ذلك اعتبر أن الأرقام هي نتاج طبيعي للنفس البشرية وطبيعة الأشياء من حولنا[14]، وهي تتوافق مع رؤية كرونيكر، الذي قال "خَلَقَ الله الأعداد الصحيحة، غير ذلك من صنيع البشر".[ج]

بسبب انتقادات الطبيعانيين، رأي البنائيون (constructivists) الحاجة لتطوير أساس الرياضيات المنطقي ليصبح أكثر دقة.[د]

في ستينيات القرن التاسع عشر ، اقترح جراسمان لأول مرة وباستخدام الاستقراء الرياضي تعريفًا ذاتيًا للأعداد الطبيعية، بدءًا بالصفر ثم مضيفا له واحد (قيمة سماها e) للحصول على الرقم التالي[17]، هو ما يعني بالتبعية أنها نتاج لاستخدام دالة الاستقراء f(n+1) المعرفة بدورها من الدالة الأولى f(0) وليست نتاج طبيعي بشكل تام.

XXX بدأ فريجه تعريف الأرقام مستخدما نظرية المجموعات. في البداية عرَّفَ الرقم الطبيعي على أنه فئة جميع المجموعات التي تكون في تقابل واحد لواحد مع مجموعة معينة. ولكن أدى هذا التعريف لمفارقات، كمفارقة راسل. لتجنب ذلك، عُدِّلَ التعريف لينص على أن الرقم الطبيعي هو مجموعة بعينها، وأن أي مجموعة في تقابل واحد لواحد معها تحوي هذا العدد من العناصر.[18]

من بعد فريجه، قدم بيرس تعريفًا، وحَسَّنَهُ ديديكيند، وطوره بيانو بصورة أكبر فيما يعرف الآن بمسلمات بيانو. وهو يعتمد على مسلمات خصائص الأعداد الترتيبية: حيث كل رقم طبيعي له خَلَفْ وكل رقم طبيعي غير صفري له سَلَفْ متفرد. مسلمات بيانو مُكافِئَة للعديد من نظم نظرية المجموعات الضعيفة. أحد هذه الأنظمة هو ZFC مع استبدال بديهية اللانهاية (Axiom of infinity) بما ينفيها. نظرية جودشتاين (Goodstein's theorem) من النظريات التي يمكن إثباتها في ZFC ولا اثبات لها بمسلمات بيانو.[19]

في هذه التعريفات، يسهل إدراج 0 (ويقابله المجموعة الخالية) كرقم طبيعي. إدراج 0 هو الآن تقليد متعارف عليه بين علماء نظرية المجموعات[20] والمنطقيين.[21] وكذا يدرج علماء الرياضيات الآخرون الصفر[ه] ولغات الحاسوب أيضًا تستخدم نظم عد تبدأ بالصفر عند تعداد العناصر كـ عدادات الحلقات وعناصر السلسلة أو المصفوفات.[22][23] لكن على الجانب المقابل، تمسك كثيرون من علماء الرياضيات بالتقاليد القديمة معتبرين 1 أول رقم طبيعي.[24]

الترميز عدل

يستخدم علماء الرياضيات الرمز N أو   للإشارة إلى مجموعة الأعداد الطبيعية.[25][26] التي أسستها نظرية المجموعات. أحيانا استخدم الرمز J في الكتابات القديمة للإشارة لهذه المجموعة.[27]

ونظرًا لأن العنصرين 0 و 1 لهما خصائص مميزة (كعناصر محايدة للجمع والضرب، على التوالي)، فمن المهم معرفة نوع الأرقام الطبيعية المستخدم. يمكن ذلك عن طريق الشرح داخل النص (بكتابة عناصر المجموعة)، أو بوضع علامة علوية أو منخفضة،[28][29] كالمثال التالي:

  • الأعداد الطبيعية بدون الصفر:  
  • الأعداد الطبيعية مع الصفر:  

بشكل آخر ونظرًا لأن الأعداد الطبيعية تشكل طبيعيًا مجموعة جزئية من الأعداد الصحيحة (غالبًا ما يرمز لها بـ  ), لذا يمكن الإشارة إليها على أنها الأعداد الصحيحة الموجبة أو غير السالبة.[30] لتوضيح إذا كان الرقم 0 مدرجًا أم لا، يتم أحيانًا إضافة حرف سفلي (أو علوي) "0" في الحالة الأولى (الأعداد الموجبة)، ويتم إضافة حرف علوي "*" في الحالة الأخيرة (غير السالبة):[28]

 
 

هوامش عدل

  1. ^ A tablet found at Kish ... thought to date from around 700 BC, uses three hooks to denote an empty place in the positional notation. Other tablets dated from around the same time use a single hook for an empty place.[6]
  2. ^ على سبيل المثال نرى هذا التقليد مستخدما في إقليدوس, طالع نسخة D. Joyce's على الويب من الكتاب السابع، التعريف الأول والثاني.[10]
  3. ^ الترجمة الإنجليزية لهذا الاقتباس تعود إلى Gary وهو بدوره يرجع الاقتباس الألماني إلى "Weber 1891–1892, 19, مقتبسًا من محاضرة لكرونيكر في عام 1886.". [15][16]
  4. ^ "معظم الانتاج الرياضي في القرن العشرين توجه صوب فحص الأساس المنطقي للأشياء وبنيتها." (Eves 1990, p. 606)
  5. ^ اكتب عنوان المرجع بين علامتي الفتح <ref> والإغلاق </ref> للمرجع MacLaneBirkhoff1999p15

[[تصنيف:نظرية الأعداد]] [[تصنيف:أعداد صحيحة]] [[تصنيف:رياضيات ابتدائية]] [[تصنيف:أعداد أصلية]]

  1. ^ "Introduction". Ishango bone. Royal Belgian Institute of Natural Sciences. مؤرشف من الأصل في 2016-03-04.
  2. ^ "Flash presentation". Ishango bone. Brussels, Belgium: Royal Belgian Institute of Natural Sciences. مؤرشف من الأصل في 2016-05-27.
  3. ^ Georges Ifrah: From on to zero, A Universal History of numbers, translated by Lowell Bair, Penguin books, 1988 (انظر المقدمة والفصول الأولى المحتوية على تفصيلات كثيرة وأبحاث عن هذا الموضوع)
  4. ^ Karl Menninger: Number words and number symbols, A cultural history of numbers, translated by Paul Broneer, Dover publications 1992 (طالع على سبيل المثال الفصول Finger Counting, و Tally Sticks)
  5. ^ Ifrah، Georges (2000). The Universal History of Numbers. Wiley. ISBN:0-471-37568-3.
  6. ^ "A history of Zero". MacTutor History of Mathematics. مؤرشف من الأصل في 2013-01-19. اطلع عليه بتاريخ 2013-01-23.
  7. ^ Mann، Charles C. (2005). 1491: New Revelations of the Americas before Columbus. Knopf. ص. 19. ISBN:978-1-4000-4006-3. مؤرشف من الأصل في 2015-05-14. اطلع عليه بتاريخ 2015-02-03 – عبر Google Books.
  8. ^ Evans، Brian (2014). "Chapter 10. Pre-Columbian Mathematics: The Olmec, Maya, and Inca Civilizations". The Development of Mathematics Throughout the Centuries: A brief history in a cultural context. John Wiley & Sons. ISBN:978-1-118-85397-9 – عبر Google Books. {{استشهاد بكتاب}}: الوسيط غير المعروف |chapterurl= تم تجاهله يقترح استخدام |مسار الفصل= (مساعدة) وروابط خارجية في |chapterurl= (مساعدة)
  9. ^ Deckers، Michael (25 أغسطس 2003). "Cyclus Decemnovennalis Dionysii – Nineteen year cycle of Dionysius". Hbar.phys.msu.ru. مؤرشف من الأصل في 2019-01-15. اطلع عليه بتاريخ 2012-02-13.
  10. ^ Euclid. "Book VII, definitions 1 and 2". في Joyce، D. (المحرر). Elements. Clark University. مؤرشف من الأصل في 2011-08-05.
  11. ^ نصير الدين الطوسي: كتاب تحرير اصول لاوقليدوس، ص 168 (رابط)
  12. ^ Mueller، Ian (2006). Philosophy of mathematics and deductive structure in Euclid's Elements. Mineola, New York: Dover Publications. ص. 58. ISBN:978-0-486-45300-2. OCLC:69792712.
  13. ^ Kline، Morris (1990) [1972]. Mathematical Thought from Ancient to Modern Times. Oxford University Press. ISBN:0-19-506135-7.
  14. ^ Goldfarb, W. 1979. 1988. ‘‘Poincare´ Against the Logicists,’’ in History and Philosophy of Modern Mathematics, ed. W. Aspray and P. Kitcher, Minnesota Studies in the Philosopy of Science, 11, Minneapolis, University of Minnesota Press, pp. 61–81.
  15. ^ Gray، Jeremy (2008). Plato's Ghost: The modernist transformation of mathematics. Princeton University Press. ص. 153. ISBN:978-1-4008-2904-0. مؤرشف من الأصل في 2017-03-29 – عبر Google Books.
  16. ^ Weber، Heinrich L. (1891–1892). "Kronecker". Jahresbericht der Deutschen Mathematiker-Vereinigung [Annual report of the German Mathematicians Association]. ص. 2:5–23. (The quote is on p. 19). مؤرشف من الأصل في 2018-08-09; "access to Jahresbericht der Deutschen Mathematiker-Vereinigung". مؤرشف من الأصل في 2017-08-20.
  17. ^ John Stillwell: Roads to Infinity, The Mathematics of Truth and Proof, AKPeters, Ltd. Natick, Massachusetts, 2010, P. 42
  18. ^ Eves 1990
  19. ^ Kirby، Laurie؛ Paris، Jeff (1982). "Accessible Independence Results for Peano Arithmetic". Wiley. ج. 14 ع. 4: 285–293. DOI:10.1112/blms/14.4.285. ISSN:0024-6093.
  20. ^ Bagaria، Joan (2017). Set Theory (ط. Winter 2014). The Stanford Encyclopedia of Philosophy. مؤرشف من الأصل في 2015-03-14. اطلع عليه بتاريخ 2015-02-13.
  21. ^ Goldrei، Derek (1998). "3". Classic Set Theory: A guided independent study (ط. 1. ed., 1. print). Boca Raton, Fla. [u.a.]: Chapman & Hall/CRC. ص. 33. ISBN:978-0-412-60610-6.
  22. ^ Brown، Jim (1978). "In defense of index origin 0". ACM SIGAPL APL Quote Quad. ج. 9 ع. 2: 7. DOI:10.1145/586050.586053.
  23. ^ Hui، Roger. "Is index origin 0 a hindrance?". jsoftware.com. مؤرشف من الأصل في 2015-10-20. اطلع عليه بتاريخ 2015-01-19.
  24. ^ هذا شائع في كتب التحليل الحقيقي. على سبيل المثال، انظر, Carothers (2000) or Thomson, Bruckner & Bruckner (2000).
  25. ^ Weisstein, Eric W. "Natural Number". mathworld.wolfram.com (بالإنجليزية). Retrieved 2020-08-11.
  26. ^ "Listing of the Mathematical Notations used in the Mathematical Functions Website: Numbers, variables, and functions". functions.wolfram.com. اطلع عليه بتاريخ 2020-07-27.
  27. ^ Rudin، W. (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. ص. 25. ISBN:978-0-07-054235-8.
  28. ^ أ ب "Standard number sets and intervals". ISO 80000-2:2009. International Organization for Standardization. ص. 6. {{استشهاد بكتاب}}: الوسيط غير المعروف |chapterurl= تم تجاهله يقترح استخدام |مسار الفصل= (مساعدة) وروابط خارجية في |chapterurl= (مساعدة)
  29. ^ Grimaldi، Ralph P. (2004). Discrete and Combinatorial Mathematics: An applied introduction (ط. 5th). Pearson Addison Wesley. ISBN:978-0-201-72634-3.
  30. ^ Grimaldi، Ralph P. (2003). A review of discrete and combinatorial mathematics (ط. 5th). Boston: Addison-Wesley. ص. 133. ISBN:978-0-201-72634-3.