متسلسلة متناسقة (رياضيات)

(بالتحويل من متسلسلة متناسقة)

في الرياضيات، المتسلسلة المتناسقة (بالإنجليزية: Harmonic series)‏ هي المتسلسلة غير المنتهية المتباعدة التالية:

.[1][2][3]

التاريخعدل

أثبت نيكول أورسمه في القرن الرابع عشر تباعد هذه المتسلسلة، ولكن لم يؤخذ هذا الإثبات بالحسبان. ثم توالت الإثباتات في القرن السابع عشر بواسطة بييترو منغولي ويوهان بيرنولي وياكوب بيرنولي.

حصلت المستسلسة تاريخياً على اهتمام وشعبية في وسط المعماريين. وعلى وجه التحديد في عصر الباروك فقد استخدم المعماريون المتسلسة في نسب تقسيم الارضيات من المرتفعات وإلى إقامة علاقات توافقية بين كل من التفاصيل الداخلية والخارجية المعمارية للكنائس والقصور.

المفارقاتعدل

الابتعادعدل

توجد العديد من البراهين على تباعد المتسلسلة المتناسقة. فيما يلي برهانان اثنان.

طريقة المقارنةعدل

 
 
 

هذا هو البرهان الأصيل الذي جاء به نيكول أورسمه قرابة عام 1530. اختبار التكثف لكوشي هو تعميم لهذه الحجة.

طريقة التكاملعدل

 
مساحة المستطيلات الصفراء المبينة في الشكل تقابل قيم حدود المتسلسة المتناسقة. الهَذْلُول   يمر من الرؤوس العليا اليسرى لهذه المستطيلات  

بالإمكان البرهان على تباعد المتسلسة المتناسقة بمقارنة مجموعها بتكامل معتل محدد.

متسلسلات ذات صلةعدل

المتسلسلة المتناسقة المتناوبةعدل

 

تُعرف هذه المتسلسة باسم المتسلسلة المتناسقة المتناوبة. وهي متقاربة إلى اللوغاريتم الطبيعي لاثنين

 

دالة زيتا لريمانعدل

تُعرف دالة زيتا لريمان حين يتوفر   حيث   عدد حقيقي، بالمتسلسلة المتقاربة التالية

 
حين يتوفر   تصير هذه الدالة مساوية للمتسلسة المتناسقة.

المتسلسلة المتناسقة المعممةعدل

 

المتسلسلة المتناسقة العشوائيةعدل

 

حيث sn هن متغيرات عشوائية مستقلة عن بعضها البعض موزعة بشكل منتظم. انظر إلى أندريه كولموغوروف وأعماله.

انظر أيضاعدل

مراجععدل

  1. ^ "معلومات عن متسلسلة متناسقة (رياضيات) على موقع thes.bncf.firenze.sbn.it". thes.bncf.firenze.sbn.it. مؤرشف من الأصل في 2022-06-14.
  2. ^ "معلومات عن متسلسلة متناسقة (رياضيات) على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2022-10-06.
  3. ^ "معلومات عن متسلسلة متناسقة (رياضيات) على موقع bigenc.ru". bigenc.ru. مؤرشف من الأصل في 2022-06-14.

وصلات خارجيةعدل