متسلسلة لوران

تمثيل دالة على شكل متسلسلة قوى تحتوي على حدود ذات درجات سالبة
(بالتحويل من متسلسلة لورنت)

في الرياضيات, متسلسلة لوران (بالإنجليزية: Laurent series)‏ لدالة عقدية (f(z، هي تمثيل لهذه الدالة على شكل متسلسلة قوى، تحتوي على حدود ذات درجات سالبة.[1][2]

متسلسلة لورنت تعرف بالنظر إلى نقطة خاصة c وطريقا للتكامل γ. طريق التكامل هذا ينبغي أن يمتد في حلقة، أشير إليها هنا باللون الأحمر حيث f(z) دالة تامة الشكل (تحليلية).

سميت هذه المتسلسلة هكذا نسبة إلى عالم الرياضيات بيير ألفونس لوران، الذي نشرها لأول مرة. كان ذلك عام 1843. كارل فايرشتراس قد يكون هو أول من اكتشف هذه المتسلسلات في مقال كتبه عام 1841، ولكنه لم ينشر إلا بعد وفاته.

انظر إلى صيغة كوشي التكاملية.

انظر أيضًاعدل

مراجععدل

  1. ^ "معلومات عن متسلسلة لورنت على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 5 يونيو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ "معلومات عن متسلسلة لورنت على موقع bigenc.ru". bigenc.ru. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)

وصلات خارجيةعدل


 
هذه بذرة مقالة عن التحليل الرياضي بحاجة للتوسيع. شارك في تحريرها.