قاطع التمام

دالة مثلثية، وهو مقلوب جيب الزاوية
(بالتحويل من دالة قاطع التمام)

في علم المثلثات والتحليل الرياضي، دالة قاطع تمام زاوية (بالإنجليزية: Cosecant of an angle)‏ هي إحدى الدوال المثلثية التي تتبع قيمة زاوية ويرمز له بـ: [3] أو ، ويمثل القاطع التمام مقلوب قيمة الجيب أي .[3] أي أنه إذا كانت لدينا زاوية ضمن مثلث قائم فإن قاطع تمام هذه الزاوية يساوي نسبة طول الوتر إلى الضلع المقابل للزاوية.

قاطع التمام
Cosecant.svg
تمثيل دالة قاطع التمام في جملة الإحداثيات الديكارتيّة
ترميز
تعريف الدالة
دالة عكسية
مشتق الدالة
[1]
مشتق عكسي
(تكامل)
[2]
الميزات الأساسية
زوجية أم فردية؟ فردية
مجال الدالة
المجال المقابل
دورة الدالة
قيم محددة
القيمة/النهاية عند  1
القيمة/النهاية عند 2kπ
  • على اليمين: +∞
  • على اليسار: -∞
القيمة/النهاية عند 
  • على اليمين: -∞
  • على اليسار: +∞
خطوط مقاربة
نقاط حرجة
ملاحظات

إن القاطع التمام هو دالة مثلثية فرعية نسبية إلى كون الدوال الرئيسية المعروفة هي الجيب وجيب التمام والظل.

يمكن التعبير عن قاطع تمام الزاوية لزاوية x -معبرا عنها بالتقدير الدائري- بواسطة متسلسلة لورنت التالية:[3]

حيث هو عدد بيرنولي.

مشتق الدالةعدل

مشتق الدالة هو:[1]

 

تكاملعدل

تكامل الدالة لها أربعة أشكال متكافئة:

 

انظر أيضاعدل

مراجععدل

 
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.