تقانة نانوية حيوية: الفرق بين النسختين

[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
جداوي بوت: تدقيق إملائي, .الأخطاء المصححة: الإنجذاب → الانجذاب, ةا → ة ا (2), باً → بًا (16)
AkhtaBot (نقاش | مساهمات)
ط تدقيق إملائي بالاعتماد على التعابير النمطية، يرجى الإبلاغ عن الأخطاء والاقتراحات
سطر 12:
==نمذجة الجسيم النانوي المضاد الكمبيوترية==
 
ولعملية الإقترانالاقتران فيما بين [[جسم مضاد|الأجسام المضادة]] و[[جسيم نانوي|الجسيمات النانوية]]، ذات قوة الانجذاب العالية فيما بينهم والخصوصية كذلك من خلال نماذج التعرف للمستقبل – الليجند، أهميةٌ قصوى في تطوير المركبات vehicles المستخدمة في تشخيص وعلاج السرطان والأمراض المختلفة، بالإضافة إلى تطبيق استخدام المستشعرات الحيوية النانوية لتشخيص الأمراض المناعية...إلخ. ونتجت المركبات النانوية الحيوية والتي تم تشكيلها بواسطة استخدام المواد النانوية الصناعية (منها الجسيمات النانوية) مع كيان حيوي ما (على سبيل المثال الجسيم المضاد) من خلال تشكيل الرابطة التساهمية المبنية على خصائصها الكيميائية الخاصة والبنائية التركيبية كذلك ومنها الذوبان في الماء والتوافق الحيوي والتحلل الحيوي كذلك.<ref name="Braden 2000">Braden et al . “X-ray crystal structure of an anti-Buckminsterfullerene antibody Fab fragment: Biomolecular recognition of C60 “ (2000) Proc. Natl. Acad. Sci. USA 97, 12193-12197</ref> هذا بالإضافة إلى وجود حاجة إلى فهم شامل للعلاقة الخاصة بالملامح الحرارية الديناميكية والحركية لترابطات الجسيم المضاد والغشاء، التنقلات المتعدية الدوارة للجسيمات المضادة المرتبطة بالغشاء، التفاعلات مع سطح الخلية المتعددة، الجزيئات الدوارة والجزيئات النانوية الصناعية الأخرى وكذلك عملية التشكل أو التعديل. ولهذه التفاصيل أهميتها في تطوير وتطبيق الأجهزة النانوية التشخيصية للأمراض المناعية. ويمثل ارتباط الجسيم المضاد مع أسطح الخلية حدثًا جزيئيًا حيويًا في آليات الجهاز المناعي التي تتوسطها الأجسام المضادة ومنها عملية [[بلعمة|البلعمة]] phagocytosis، وهي إحدى عملية الجهاز المناعي القائمة على الأجسام المضادة القائمة على الخلايا السامة المتوسطة للخلايا.<ref>Pisarchick et al. “Binding of a monoclonal antibody and its Fab fragment to supported phospholipid monolayers measured by total internal reflection fluorescence microscopy”.</ref>
 
في حين لوحظ مؤخرًا وجود بعض البروتينات الطبيعية والأجسام المضادة التي لها القدرة على التعرف على الجسيمات النانوية الخاصة. وعلى سبيل المثال، جسمًا مضادًا من الجهاز المناعي للفأر له القدرة على التعرف على [[فوليرين|فوليرينات]] C19 الثانوية المشتقة ذات تقاربٍ ملزمٍ يصل إلى نحو 25 نانومتر.<ref name="Braden 2000"/> وقد افترضت الدراسات التي أجراها نوون وآخرون أن موقع الفولرين يتكون ويتشكل على واجهة التفاعل للسلاسل الخفيفة والثقيلة والمصطفة مع مجموعة من بقايا الأحماض الأمينية تكميلية الشكل الكارهة للماء shape-complementary hydrophobic amino acid residues. ولا تحتل التعديلات التساهمية للفوليرينات الوظيفية سوى مساحةٍ صغيرةٍ من مساحة سطح الجسيم، حيث تكون المساحة الأكبر من السطع والغير محتلة حرةً لتتفاعل مع الجسم المضاد. ومن ثم، وللحصول على فهمٍ أعمقٍ للتفاعلات التفصيلية فيما بين الجسميات النانوية والجسم المضاد، يتم تنفيذ محاكاة ديناميكا جزيئية باستخدام محاكاة الديناميكا الجزيئية، ويعد الهدف من وراء دراسات تلك النماذج النظرية هو القدرة على التعرف على الطرق المفضلة بقوة للإلزام والربط.<ref>Noon et al “Molecular dynamics analysis of a buckyball-antibody complex”</ref>
سطر 18:
ولدراسة النمذجة، يمكن الحصول على الإحداثيات المبدئية للجسم المضاد من بنك بيانات البروتين Protein Data Bank.<ref name="Braden 2000"/><ref>[http://www.rcsb.org/pdb/home/home.do A Resource for Studying Biological Macromolecules] ''RCSB Protein Data Bank.''</ref>
 
وتكون الافتراضات الأولى، كتقديرٍ تقريبيٍ، خلال دراسة النمذجة هي أن المشتقات المائية لا تلعب دورًا حاسمًا في تفاعلات الجسم المضاد – والمواد النانوية المسعورة و أن التركيب الإلكتروني يبقى هادئًا خلال عملية الإقترانالاقتران. في حين أفادت الدراسات الأدبية التي أجريت مسبقًا أن الجسيم النانوي يرسو ويستقر داخل موقع إلزام مقترح.<ref name="Braden 2000"/> وقد استخدمت هنا كلٌ من وظيفة الهيدروجين القطبي المحتملة أو المتوقعة Polar-hydrogen potential function (PARAM19) ونموذج المحلول المائي المعدل TIP3P. [1].
 
وتشتمل عملية المحاكاة ل300 خطوة تقريبًا من التصغير، باستخدام طريقة (خوارزمية) [[طريقة نيوتن|نيوتن - رافسون]] Newton Raphson method الفعالة. ولتقليل وقت المحاكاة الضروري، يتم استخدام طريقة عالية الكفاءة لمحاكاة التفاعلات المتمركزة في الموقع الفعال للبروتين، والمتمثلة في الديناميكا الجزيئية الحدودية العشوائية stochastic boundary molecular dynamics (SBMD). هذا ويتم اختيار النقطة المرجعية لتقسيم النظام في طريقة SBMD لتكون قريبة من مركز المواد النانوية، والمفترض أن تكون موحدة ومتسقة المجال. ويمكن افتراض أن النظام الحيوي النانوي المعقد منفصل إلى خزانٍ كرويٍ ومناطق تفاعلٍ؛ في حين يتم تقسيم الأخير إلى منطقة تفاعلٍ ومنطقة عازلة. هذا بالإضافة إلى أن الذرات في منطقة التفاعل تنتشر بواسطة الديناميكا الجزيئية، بينما الذرات الموجودة بالمنطقة العازلة والتي تتضمن [[ديناميكا لانجفان]] Langevin dynamics، يتم الاحتفاظ بها باستخدام قوى الاستعادة المتناسقة.