دالة موجية: الفرق بين النسختين

تم إزالة 22 بايت ، ‏ قبل 10 سنوات
ط
تدقيق إملائي وتنسيق
ط (r2.6.4) (روبوت تعديل: es:Función de onda)
ط (تدقيق إملائي وتنسيق)
{{مقدمة ميكانيكا الكم}}
 
تحتل الدالة الموجية أو دالة الموجة مكانة مهمة في [[ميكانيكا الكم]]، حيث ينص [[مبدأ الارتياب]] على عدم قدرتنا على تحديد موضع وسرعة جسيم ما بدقة، لكن نعمد إلى '''دالة موجية''' مرافقة لكل جسيم حسب التصور الموجي الذي قدمه [[إرفين شرودنغر|شرودنغر]]، وتقوم هذه الدالة الموجية بتحديد احتمال وجود الجسيم في أي نقطة من الفراغ التي يمكن للجسيم التواجد فيها. دالة الموجة هي أداة لوصف الجسيمات وحركتها وتآثرها مع جسيمات أخرى مثل [[ذرة|الذرة]] أو [[نواة الذرة]] .
 
تصف الدالة الموجية في [[ميكانيكا الكم]] الحالة الكمومية إما لأحد [[جسيم أولي|الجسيمات الأولية]] أو لمجموعة من الجسيمات الأولية في الفراغ ،وتعين احتمال تواجده أو تواجدها في مكان معين. (احتمال تواجد جسيم في مكان معين يُعبر عنه في ميكانيكا الكم بعدد بين 1 (موجود 100%) وصفر (غير موجود 0 %). وطبقا لتفسير كوبنهاجن لميكانيكا الكم تحتوي الدالة الموجية على جميع المعلومات المتعلقة بالجسيم أو مجموعة الجسيمات. والدالة الموجية تكون حلا لإحدى [[معادلة شرودنجر|معادلات شرودنجر]] التي يمكن صياغتها لوصف النظام المطلوب دراسته ، مثل [[الإلكترون]] في غلاف [[ذرة]] أو [[تشتت ]] البرتونات على [[نواة الذرة]] ، وغيرها . ويمكن للمعادلة الموجية أن تصف الحالة الكمومية لجسيم أولى، واقع تحت تأثير خارجي (مثل حركة الإلكترون حول النواة في الذرة) أو حالة الإلكترون الحر.
 
== تمثيل الجسيم بموجة ==
 
 
[[ملف:Hydrogen Density Plots.png|280px|thumb|300px|
كثافة احتمال وجود [[إلكترون|الإلكترون]] في المدارات الأولى [[ذرة|لذرة]] [[الهيدروجين]] مبينة كمقاطع مستوية ؟ أحجام المدارات ممثلة هنا بمقاييس رسم مختلفة.]]
 
بينما تعطي فيزياء [[الموجة]] الوصف العام للمعادلة الموجية ، نقتصر هنا على وصف الدالة الموجية لجسيم . ونظرا لأن الدالة الموجية المستخدمة في هذا الغرض [[عدد مركب| مركبة]] وليست حقيقية ، يرجع إلى أن الدالة الموجية لجسيم <math>\psi(\mathbf{r},t)</math> ليس لها المعنى عند وصف شدة المجال الكهربائي <math>\mathbf{\Epsilon}(\mathbf{r},t)</math> لموجة ضوئية طبقا للميكانيكا التقليدية أو في [[معادلات ماكسويل | الديناميكا الكهرومغناطيسية]] .
 
بينما تعطي فيزياء [[الموجة]] الوصف العام للمعادلة الموجية ، نقتصر هنا على وصف الدالة الموجية لجسيم . ونظرا لأن الدالة الموجية المستخدمة في هذا الغرض [[عدد مركب| مركبة]] وليست حقيقية ، يرجع إلى أن الدالة الموجية لجسيم <math>\psi(\mathbf{r},t)</math> ليس لها المعنى عند وصف شدة المجال الكهربائي <math>\mathbf{\Epsilon}(\mathbf{r},t)</math> لموجة ضوئية طبقا للميكانيكا التقليدية أو في [[معادلات ماكسويل | الديناميكا الكهرومغناطيسية]] .
 
تستخدم الدالة الموجية في [[ميكانيكا الكم]] لوصف الحالة الكمومية لنظام فيزيائي. ويمكن أن تتخذ الدالة الموجية <math>\psi(\mathbf{r},t)</math> لجسيم كمومي صيغة موجة مستوية (لجسيم حر) ، على هيئة :
 
* <math>\mathbf{r}</math> متجه الوضع ,
* <math>A_0</math> [[عدد مركب |مطال مركب ]] ,
* <math>\mathbf{k}</math> [[متجه موجي | متجه الموجة]] ،
* <math>\omega</math> [[تردد زاوي |التردد الزاوي ]] .
 
وطبقا [[شرودنجر|لشرودنجر ]] تنتج الدوال الموجية كحلول [[معادلة شرودنجر|لمعادلة شرودنجر]] ، أي أن الدالة الموجية يجب أن تكون حلا لمعادلة شرودنجر. وتوصف الخواص المختلفة لجسيم بواسطة عدة دوال موجية جزئية . وتبعا لصفات تحول الدالة الموجية طبقا لتحول لورينس يفرق الفيزيائي بين نظرية المجال الكمومي النسبي [[متجه|غير المتجة]] و نظريةونظرية المجال الكمومي [[موتر|الموتر]] .
 
==شرط التوحيد واحتمال تواجد جسيم==
 
بينما يمكن تحديد مكان جسم (مثل كرة ) في الميكانيكا التقليدية فإنه ليس من الممكن تحديد مكان [[جسيم أولي|جسيم]] <math>\mathbf{r}</math> بدقة كاملة طبقا لعلاقة هايزنبرج [[مبدأ عدم التأكد]] عندما ننزل من المقاييس الكبيرة العينية (الكرة) إلى مقاييس [[ذرة|الذرة]] والجسيمات تحت الذرية.
 
واطلاقاوإطلاقا من تصور حتمية وجود الجسيم ، فلا بد أن يكون موجودا في أي وقت وفي أي مكان بين الصفر ومالا نهاية ، ولهذا فلا بد أن ينطبق شرط التوحيد
<math> \int_{\text{Raum}}^{} \psi\psi^*\, \mathrm dV=1 </math>
 
=
<math>\psi\psi^*</math>.
 
 
يعطي كثافة احتمال وجود الجسيم في النقطة
<math>\mathbf{r}</math> وفي الزمن ''t'' .
 
وبالنسبة لدالة موجية لجسيم في صيغتها المكانية (اهمال التغير الزمني) فإن قيمة تكامل كثافة وجود الجسيم في عنصر المكان احتمال وجود الجسيم (إلكترون مثلا) في ذلك الحيز من المكان .
 
== انظر أيضا ==
916٬418

تعديل