وسط بين نجمي: الفرق بين النسختين

[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
ط بوت:إضافة قوالب تصفح (1)
JarBot (نقاش | مساهمات)
ط بوت:الإبلاغ عن رابط معطوب أو مؤرشف V4.2 (تجريبي)
سطر 1:
{{تشكل النجوم}}
[[ملف:ESO-Horsehead Nebula.jpg|تصغير|يسار|200بك|سديم رأس الحصان ([[سديم مظلم]]) في [[الجبار (كوكبة)|كوكبة الجبار]] تصريح من [ESO].]]
 
[[ملف:WHAM survey.png|تصغير|medium|يسار|200بك|توزيع الهيدروجين المؤين في بعض اجزاء الوسط بين النجمي في المجرة كما سجله مسبار WHAM الفضائي، {{harvard citation|Haffner|Reynolds|Tufte|Madsen|2003|}}.]]
 
تطلق كلمة الوسط بين [[نجم|النجوم]] على المادة الموجودة بين [[نجم|النجوم]] في [[مجرة|المجرة]] وهى عبارة عن [[جزيء|جزيئات]] و[[أيون]]ات منخفضة الكثافة (بضع آلاف الذرات في اللتر مقارنة ب 10اس 22 في اللتر للهواء الذي نستنشقه) إلا أنه يغلب فيه عنصر [[هيدروجين|الهيدروجين]]. وتشمل دراسته في علم [[فيزياء|الفيزياء]] الفلكية على معرفة طبيعة الجزيئات المبعثرة بشكل عشوائي في [[فضاء خارجي|الفضاء]] بين [[نجم|النجوم]] وبين المجرات، وأحيانا يختلط بها غبارا كونيا إذا كانت ناتجة من انفجار [[مستعر أعظم]].
بصفة عامة الغاز البين نجمي هو المادة الخام لتكوين [[نجم|نجوم]] جديدة حيث تولد الأخيرة في المناطق الأكثر [[كثافة]] في الوسط البين نجمي. ويكثر وجود الغاز البين نجمي في أذرع المجرات والسدم، كما يتجمع أيضا في [[حوصلة مجرة|حوصلة مجرتنا]] بين [[نجم|النجوم]] الكثيفة فيه، و يضع حدا لما يمكننا رؤيته داخل مركز [[درب التبانة]]، وبالتالى تكون حوصلة [[مجرة|المجرة]] شديدة اللمعان.
[[ملف:Andromeda galaxy.jpg|تصغير|يسار|200بك|مجرة [[المرأة المسلسلة (مجرة)|المرأة المسلسلة]] ، النواة في الوسط والأذرع الحلزونية حولها وتتكون من [[تجمععنقود نجمي|تجمعات نجمية]] ووسط بين نجمي.]]
 
== خواص وأنواع الوسط بين النجمي ==
لا يتوزع الوسط بانتظام داخل المجرة ولكن تسحبه الجاذبية في طبقة رقيقة في قرص [[مجرة|المجرة]] على شكل سحب. وأحيانا يكون الغاز ساخنا ويطلق ضوءا مرئيا ويسمى [[سديم إشعاعي]]. وغالبا ما يكون مصدر الإشعاع [[نجم|نجوم]] شابة من نوع O أو B . وحين يكون الغاز باردا يمكن رؤيته من [[ضوء|الضوء]] المنعكس عليه من [[نجم]] قريب، وفي تلك الحالة يسمى [[سديم عاكس]]. وأحيانا يكون الوسط كثيفا [[كثافة]] تحجب ضوء النجوم في الخلفية فيسمى [[سديم مظلم]]. وعلى الرغم من أن النوعين الأخيرين لا يصدران ضوءا مرئيا ولكنهما يصدران ضوءا غير مرئيا في حيز [[الأشعة تحت الحمراء]].
[[ملف:trifid.nebula.arp.750pix.jpg|تصغير|يسار|200بك|سديم تريفيد أو [[مسييه 20]].]]
 
== تحليل الوسط البين نجمى ==
تمكننا [[أشعة|الأشعة]] التي يطلقها الوسط أو التي يعكسها من معرفة خواصه وتكوينه [[كيمياء|الكيميائى]] عن طريق تحليل [[طيف (توضيح)|الطيف]] ([[مطيافية|علم الأطياف]] ) الخاص بالسدم، حيث تمتص الذرات أو الجزيئات الطول الموجى للضوء المكافئ للتغير في الطاقة للإلكترون. لذا عند مقارنة الطيف القادم من [[نجم|النجم]] من خلال السدم بطيف [[نجمة (توضيح)|النجم]] الأصلى يمكن تحديد مستويات [[طاقة|الطاقة]] الناقصة التي تظهر على شكل خطوط سوداء تقطع الطيف وكذلك الحال بالنسبة للسدم الساخنة حيث تصدر خطوط [[أشعةالأشعة|إشعاع]] في الطيف. وهكذا عند دراسة خطوط الإشعاع والإمتصاص في الطيف يمكن معرفة التكوين و[[درجة حرارة|درجة الحرارة]] والكثافة في الوسط.
 
== تقدم جديد نحو حل الألغاز الوسط بين نجمي ==
يُعَدّ الغموض الذي يحيط بانشطار الروابط بين النجمية (diffuse interstellar bands) والذي يُعرف اختصاراً بـ DIBs واحداً من أكثر الأسئلة المثيرة للجدل في [[كيمياء فلكية|الكيمياء الفلكية]]، وهذه الروابط هي عبارة عن مجموعة من 400 رابطة امتصاص تظهر في الطيف الضوئي الذي يصل الأرض بعد اجتيازه الوسط بين النجمي. على الرغم من الجهود البحثية المكثفة خلال العقود القليلة الماضية إلا أن هذه المهمة بقيت بعيدة المنال، وذلك رغم وجود مؤشرات على أنها تنشأ من وجود جزيئات الهيدروجين الكبيرة في الوسط بين النجمي. وقد أضفت التجارب الحديثة التي قام بها معهد ماكس بورن مصداقيةً جديدة على هذه الفرضية.
 
ومن بين الهيدروكربونات التي يُحتمل أن تكون ناقلة للـ DIBs،تُعد الهيدروكربونات العطرية متعددة الحلقات polycyclic aromatic hydrocarbons والتي تُعرف اختصاراً بـ PAHs واعدة. تَبيَّن وجود جزئيات هذه [[هيدروكربون|الهيدروكربونات]] سابقاً في العديد من الأجسام الفلكية، كما هو الحال في الوسط بين النجمي في مجرة درب التبانة. إلا أنه في مجال الفلك فإن عرض خط الـ DIBs والذي يعد مؤشراً على عُمْر الحالات المُثارة في عملية الامتصاص، يُعتبر حجةً ضد الهيدروكربونات العطرية متعددة الحلقات. أُجريت التجربة الجديدة بالتعاون مع علماء من جامعة ليون، وبمساهمة نظرية من علماء جامعات هايدلبرغ، وحيدر آباد، ولايدن. وقد تبين أن أعمار الحالات المعنية ضمن الأحجام الصغيرة والمتوسطة للهيدروكربونات العطرية متعددة الحلقات تتفق مع عرض خط الـ DIBs.
 
خلال التجارب، تم تأيين سلسلة من جزيئات الهيدروكربونات العطرية متعددة الحلقات ذات الأحجام الصغيرة إلى المتوسطة (النفثالين، والأنثراسين، والبيرين، والتتراسين والتي تحتوي من 2-4 حلقات عطرية تشبه حلقة البنزين) بواسطة نبضة ليزر من الأشعة فوق البنفسجية القصيرة القصوى (ultrashort extreme-ultraviolet) والتي تٌعرف اخصاراً بـXUV.
 
ونتيجة لارتباط الإلكترون، فإن امتصاص فوتون XUV لم يؤدِ فقط إلى إزالة أحد [[إلكترون|الإلكترونات]]، بل أدى كذلك إلى إثارة الإلكترونات في الأيون الجزيئي المتروك. تم رصد عُمْر هذه الحالات المثارة من الإلكترونات المترابطة من خلال التحقُّق من الأيونات بواسطة نبضة ليزر معتدلة القوة من الأشعة تحت الحمراء بالإضافة إلى تأخير زمني. وعندما تشكلت الأيونات كانت الإثارة الإلكترونية في أعلى مستوى لها، وكانت هناك حاجة فقط إلى واحدٍ أو القليل من فوتونات الأشعة تحت الحمراء لإزالة إلكترون ثانٍ.
إلا أنه بعد فترةٍ قليلة عندما يرتاح الأيون وتنتقل الطاقة من مستوى الحرية الإلكترونية إلى مستوى الحرية الذبذبية، عندها ستكون هناك حاجة للمزيد من فوتونات الأشعة تحت الحمراء لإزالة إلكترون ثانٍ. بعبارة أخرى، قادت مراقبة تشكل الأيونات مضاعفة الشحنة كدالة على التأخر الزمني بين نبضات ليزر XUV و IR إلى استخلاص أعمار الحالات المُتشكلة بواسطة عملية التأين بالأشعةXUV. وكما اتضح فيما بعد وكان مُدعماً بالحسابات عالية المستوى، فإن هذه الأعمار التي تصل إلى عشرات الفيمتو ثانية، هي ضمن النطاق المطلوب للقدرة على حمل الـ DIBs.
 
وإذا ما ذهبنا إلى ما أبعد من تطبيقات الـ DIBs، فإن التجارب الحديثة لها تطبيقات في العلوم فائقة السرعة. ومن أهم الأهداف التي نسعى وراءها في مجال العلوم فائقة السرعة هو مراقبة تحرك الشحنة أي الإلكترونات سريعة الحركة (من الأوتو ثانية إلى الفيمتو ثانية القليلة) أو الفراغ داخل البنية الجزيئية. وقد اُقترح أن انتقال الشحنة قد يقدّم فرصاً جديدةً للتحكم بالتفاعل الكيميائي. وهو هدف قديمٌ قِدَم الأبحاث الكيميائية نفسها.
 
تُعَد المؤشّرات الأولية للمدى الزمني حول ديناميكيات الانتقال السريع من الأوتو ثانية إلى الفيمتو ثانية قليلة ويمكن ملاحظتها في الجزيئات عديدة الذرات التي تحصّل عليها الباحثون في جامعة ميلانو العامَ الفائت. إن الجزئيات العطرية متعددة الحلقات التي تمت دراستها في التجارب عن الـ MBI تمثل أكبر الأنواع الجزيئية التي تم تطبيقها إلى الآن بواسطة مِضخّة المسبار الطيفي فائق السرعة الذي يعمل بأشعة XUV-IR. وبالإضافة إلى الفهم الواضح للاسترخاء الإلكتروني السريع الذي تم الحصول عليه من العمل الحالي، فإن العمل النظري الذي صُمِّم من أجل تفسير النتائج يقتَرح أن الهيدروكربونات العطرية عديدة الحلقات هي مرشح مثالي لمراقبة المدى الزمني السريع لانتقال الشحنات. وسيتم إجراء مثل هذه التجارب مستقبلاً.<ref>[http://www.nature.com/ncomms/2015/150813/ncomms8909/full/ncomms8909.html] الورقة العلمية {{Webarchive|url=httphttps://web.archive.org/web/20150924094407/http://www.nature.com:80/ncomms/2015/150813/ncomms8909/full/ncomms8909.html |date=24 سبتمبر 2015}}</ref>
 
== المصادر ==
سطر 40:
* [[سحب بين النجوم]]
* [[وسط بين كوكبي]]
* [[قائمة جزيئات الأقراص حول النجمية والوسط بين نجميالنجمي|قائمة جزيئات والوسط بين نجمي]]
 
== مراجع ==