تصميم السلاح النووي: الفرق بين النسختين

[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
OKBot (نقاش | مساهمات)
ط تدقيق إملائي يستهدف همزات القطع (المزيد)
OKBot (نقاش | مساهمات)
ط تدقيق إملائي يستهدف حروف الجر (المزيد)
سطر 12:
 
ظهرت أغلب ابتكارات الاسلحة النووية من الولايات المتحدة الأمريكية، بالرغم من تطوير تصاميم أخرى من قبل دول غيرها لاحقاً. [٣] ويميز الوصف التالي التصاميم الأمريكية كانت تسمى الأسلحة الانشطارية في حساب صحفي في وقت مبكر بالقنبلة الذرية أو قنبلة أي نسبة لكلمة الذرة بالإنجليزية، ويمكمن الخطأ في التسمية من نشاط طاقة الذرة نفسها. تسمى الاسلحة المشمولة في عملية الاندماج بالقنبلة الهيدروجينية وهناك سبب آخر للخطأ في التسمية وهو الاعتقاد بالقوة التدميرية لطاقة القنبلة نظراً لعملية الاندماج. يفضل العاملون في هذا المجال استخدام مصطلحات مثل النووية والنووية الحرارية على التوالي.
يعود مصطلح النووية الحرارية الىإلى الطاقة الحرارية العالية المطلوب استخدامها لبدء عملية الانصهار أو الاندماج.والتي تتجاهل عامل مهم وهو الضغط والذي كان سراً في ذلك الوقت وبقي هذا المصطلح حتى وقتنا الحاضر. ولا تصف مصطلحات عديدة مستخدمة في مجال الأسلحة النووية بشكل دقيق بسبب اصل العملية وتصنيفات بيئة حدوث العملية داخل القنبلة.
{{الأسلحة النووية}}
==ردات الفعل النووية==
يقسم الانشطار النووي الذرات الأثقل الىإلى ذرات أخف. ويربط الاندماج النووي الذرات الأخف مع بعضها لتكوين ذرات أثقل. وتعطينا كلا ردتي الفعل طاقة اقوي مليون مرة من ردات الفعل الكيميائية المشابهة، تكون الانفجارات النووية أقوى مليون مرة مقارنة بالانفجارات غير النووية، التي طالبت ببراءة اختراع فرنسية في مايو ١٩٣٩ م.<ref>{{Citation
|title=Perfectionnements aux charges explosives (Improvements to explosive charges)
|url=http://worldwide.espacenet.com/publicationDetails/originalDocument?CC{{=}}FR&NR{{=}}971324&KC{{=}}&FT{{=}}E
سطر 37:
 
ودرجة السخونة هذه تصل إلى مرحلة كافية لينبعث [[أشعة الجسم الأسود]] في الطيف الإشعاعي للأشعة السينية (أشعة اكس). هذه الأشعة السينية تُمتص بواسطة الهواء المحيط، فينتج النار والصوت العالي للانفجار النووي. معظم المنتجات الناتجة من الإنشطار النووي لها العديد من النيترونات فلا تكون مستقرة، فتكون مشعة بواسطة إنحلال بيتا، تحول النيترونات إلى بروتونات بواسطة [[اضمحلال بيتا]] (إلكترونات و أشعة غاما. مدى العمر النصف لها يتراوح من جزء من ألف من الثانيه إلى حوالي 200،0000 سنة. العديد يتحلل إلى نظائر تكون مشعة بنفسها، إذا من 1 إلى 6 ( متوسط 3) تحللات قد تكون متطلبة للوصول إلى الاستقرار<ref>Glasstone, ''Sourcebook'', p. 503.</ref>. في المتفاعلات، المنتجات المشعة تكون الفضلات النووية في الوقود المستهلك. في القنابل تصبح نثار ذري مشع، كلا المحلي والعالمي.
في غضون ذلك، في داخل القنبلة المتفجرة تحمل النيوترونات المنطلقة من الانشطار تقريبا ٣٪ من طاقة الانشطار الأولي. الطاقة الحركية للنيوترون تزيد من طاقة انفجار القنبلة لكنها ليست بفعالية الطاقة التي من الشظايا المشحونة، لأن تباطؤ النيوترونات لا يتم بشكل سريع. أهم تأثير لانشطار النيوترونات على قوة القنبلة هو البدء في انشطارات أخرى. ينبعث من قلب القنبلة أكثر من نصف النيوترونات، و الباقي يضرب بالقرب من الأنوية U-235 ليتسبب في انشطارها أضعاف مضاعفة بسلسلة متزايدة ( 1، 2، 4، 8، 16، الخ). بدءا من واحد، عدد الانشطار نظرياً يمكن أن يتضاعف مئة مرة في جزء من مليون من الثانية، مما قد يؤدي الىإلى استهلاك كل اليورانيوم أو البلوتونيوم إلى مئات الأطنان من الرابط الرقم مئة في السلسلة. عملياً، القنابل لا تحتوي على هكذا مقدار من اليورانيوم أو البلوتونيوم، و عادة ( في سلاح حديث ) نحو 2 الىإلى 2.50 كيلوغرام من البلوتونيوم تمثل 40الى 50 كيلوطن من الطاقة، تخضع للانشطار قبل أن تفجر النواة نفسها إلى أجزاء.
تركيب قنبلة انفجارية معا هو أعظم تحدي في تصميم سلاح الانشطار. حرارة الانشطار توسع تجويف اليورانيوم بسرعة لتفصل هدف النواة فتشكل مساحة للنيوترونات لتنبعث بدون أن تقبض. فتتوقف سلسلة ردات الفعل.
 
المواد التي يمكن أن تحمل سلسلة من ردات الفعل تسمى مواد انشطارية. اثنان من المواد الانشطارية المستخدمة في الأسلحة النووية هما:U-235 و يعرف أيضاً باليورانيوم عالي التخصيب (HEU)، أورالي (Oy) سبائك أوك ريدج. أو 25 ( آخر عدد من الإعداد الذرية، وهو 92 لليورانيوم و الوزن الذري هنا 235، على التوالي) ؛ و Pu-239، ويعرف أيضاً بالبلوتونيوم، أو 49 (من 94 و 239).
 
نظير اليورانيوم الاكثر شيوعا، اليورانيوم إحدى النظائر المشعة الأكثر انتشارا. U-238، قابل للإنشطار لكنه ليس انشطاري (بمعنى أنه غير قادر على حمل سلسلة السلسلة من ردود رد الفعل بنفسه و لكن يستطيع الانقسام مع النيترونات السريعة.) أسمائه المستعاره تضمن اليورانيوم الطبيعي أو اليوارانيوم الغير مخصب، اليورانيوم المستنفذ du. سبائك الأنبوب و 28. غير قادرة على حمل الرقم التسلسلي من ردود الفعل، لأن انقسام النيترونات ليس بالقوه الكافية لجهد u-238اكثر. النيترونات مصد للإنصهار الىإلى الانشطارu-238. هذا u-238 الانشطار ردة فعل المنتجات معظمها طاقة في مرحلتين سلاح نووي حراري مثالي.
 
===اندماج النوى الذرية===
سطر 51:
 
[[ملف:Deuterium-tritium fusion.svg|يسار|200بك]]
مجموع الطاقة التي تنتج هو 17.6 ميجا إلكترون فولت، وهو عشر الانشطار لكن كثافة المكونات بنسبة واحد الىإلى خمسين، لذلك فالطاقة الناتجة لكل وحدة كتلية تكون أكبر. هي أعظم. في تفاعلات الانشطار 80 بالمائة من الطاقة وهو ما يعادل 14 ميجا إلكترون فولت تكون لحركة النيوتيرون الذي لا يحمل شحنة إلكترونية ويكون غالبا بكثافة ذرة الهيدروجين التي تصنعه مكثف بأنوية الهيدروجين التي تصنعه، إمكانية خروجه عن موقعه أو محوره مع استمرار احتفاظه بطاقته يساعد على استمرار التفاعل أو إنتاج الاشعة السينية التي تستخدم للانفجارات و الحرائق. الطريقة العلمية الوحيدة للاستفادة من معظم طاقة الانشطار هي بحصر النيوترون داخل زجاجة ضخمة من المواد الثقيلة مثل:الرصاص، اليورانيوم أو البلوتونيوم. فإذا حصرنا 14 ميجا فولت نيترون بمادة اليورانيوم (أما نوع:235 أو 238) أو بمادة البوتونيوم، النتيجة التي سوف تظهرلنا هو انشطار و إطلاق طاقة قدرها 180 ميجا فولت من طاقة الانشطار، أي إنتاج طاقة بعشرة أضعاف الطاقة المدخلة. الانشطار النووي هذا ضروري لبدء عملية الانشطار الأصلية، كما أنه يساعد على تحمل قوة الانشطار، ويحصر ويضاعف الطاقة التي أُنتجت في نيوترون الانشطار. وفي حالة انفجار النيوترون (أنظر في الأسفل)، فإن عملية الانشطار لا تتم بعد ابتعاد النيوترونات عن الهدف المنشود.
 
=== إنتاج التريتيوم===
سطر 58:
:::<math>\ ^6\mathrm{Li} + n \longrightarrow ^4\!\!\mathrm{He} + ^3\!\mathrm{T} + 5\ \mathrm{MeV} </math>
 
وجود المفاعل النووي أمر ضروري لتوفير النيوترونات اذا أريد توفيرالتريتيوم قبل استخدام السلاح، لكن قد تستعمل في مراحل مراحلة مبكرة من تفاعلات الانصهار لانشطار الليثيوم-6 (مثلا على شكل ديوتيريد الليثيوم) و تكوين التريتيوم لاستخدامات مخصصة. هذه الطريقة تساعد على استخدام كميات أقل من التريتيوم المستخدم في السلاح: يتم إنشاء التريتيوم عندما يتم التفجير.<ref>مارتن, جايمس إي. ''Physics for Radiation Protection'' (فيزياء الحماية من الإشعاعات). WILEY-VCH Verlag GmbH & Co. KGaA, واينهام, 2006, ص. 195.</ref>\ المقياس الصناعي لتحويل الليثيوم 6 الىإلى تريتيوم مشابه جدا لطريقة تحويل عنصر اليورانيوم 238 إلى بلوتينيوم 239. في كلا الحالتين المواد المزودة (أو المُنتِجة) يتم وضعها داخل المفاعل النووي وإزالتها بعد تحويلها بعد فترة من الزمن.
 
انشطار ذرة واحدة من البلوتونيوم يطلق طاقة أكبر بعشر مرات من الطاقة الكلية لإنشطار ذرة واحدة من التريتيوم. لهذا السبب، يتم تضمين التريتيوم في مكونات الأسلحة النووية عندما تتسبب في انشطار أكبر من تضحيات إنتاجها، وتحديداً في حالة الانشطار المعزز بالانصهار. هناك أربعة أنواع رئيسية للأسلحة النووية، أولها الانشطار النقي و يستخدم التفاعل النووي الأول من الثلاث التفاعلات النووية المذكورة سابقاً. النوع الثاني هو الانشطار المعزز بالانصهار ويستخدم أول تفاعلين.النوع الثالث هو الانشطار النووي الحراري ذو مرحلتين و يستخدم جميع التفاعلات الثلاثة.
سطر 86:
الاسلحة المدمرة -المواد القابلة للانشطار وأي عمليات عكسية أو عابثة مرتبطة به- تعرف بمسمى الحفرة (the pit). بعض هذه الأسلحة اختبرت خلال العام 1950م باستخدام أنواع مصنّعة من U-235 أو مركب البلوتنيوم<ref name="fact">[http://www.fas.org/sgp/othergov/doe/rdd-7.html "Restricted Data Declassification Decisions from 1945 until Present"] – "]دليل غلى إمكانية دمج الأورانيوم والبلاتينيو في نواة الأسلحة النووية.."</ref>، لكن الأنواع المصنّعة من البلوتنيوم كان الاصغر قطراً وأصبحت الأسلحة الرئيسية منذ بداية 1960.
 
صب البلوتنيوم و قطعه صعب، ليس لأنه سام فقط، بل لأن للبلوتونيوم مراحل فلزيّة تسمى كذلك بالشكل المتأصل <nowiki>{{إنك|Allotrope}}</nowiki>. عندما يبرد البلوتونيوم، يحدث تغير في المرحلة مما ينتج عنه تشويه وتكسير. فعادة، يتم التغلب على هذا التشويه بمزجه مع 3 - 3.5 مول (0.9% - 1.0% من الوزن) من الغاليوم، مشكلاً سبائك البلوتونيوم الغاليوم والذي يؤدي إلى رفع مرحلتها دلتا الخاصة بها على نطاق حراري واسع<ref name="fact" />. عند تبريدها من انصهارها يكون لديها تغير مرحلي واحد فقط بدلاً من أربعة تغيرات التي كان من المفترض أن تمر بها، ويكون هذا التحول من أيـبيلسون الىإلى دلتا. يمكن للمعادن ثلاثية التكافؤ أن تعمل أيضاً، لكن الغاليوم يمتلك نيوترون صغير بقطاع عرضي و يساعد على مقاومة الأكسدة و التآكل. يبقى العائق في أن مركبات الغاليوم قابلة للتآكل، وكذلك ألمر بالنسبة للبلوتونيوم إذا تم استرداده من الأسلحة المفككة لتحويله إلى ثاني أكسيد البلوتونيوم لمفاعلات الطاقة، هناك صعوبة في إزالة الغاليوم.
 
لأن البولتونيوم يعتبر تفاعلاً كيميائيًا، فأنه من الشائع طلي الحفرة النهائية مع طبقة خفيفة من المعدن الخام، والتي بدورها تقلل من المخاطر السامة. وفي قنبلة ترينيتي تم استعمال طلاء الفضة المعدني، وبعد ذلك، وضع النيكل داخل أبخرة (النيكل رباعي الكربونيل) ولكن حاليًا يتم تفضيل الذهب.
سطر 93:
التحسين الأول على تصميم قنبلة "الرجل البدين" كان بوضع مجال جوي بين الحفرة والوقود النووي لإنشاء تأثير "المطرقة والمسمار". والحفرة دُعمت بمخروط مجوّف داخل الوقود النووي لتكون مرفوعة. وفي الاختبارات الثلاثة لـ"عملية الحجر الرملي" في عام 1948م، اُستخدمت تصاميم "الرجل البدين" مع رفع الحفر. والنتيجة الكبيرة كانت بالحصول على 49 كيلو طن مما يعني أكثر بضعفين من محصول "الرجل البدين" من دون رفع الحفر<ref>مصدر العلومات حول الأسلحة النووية هو متاب تشك هانسون، "سيوف القيامة: تطور الأسلحة النووية الأميركية من٫ عام 1945م، ياٌنكليزية ''The Swords of Armageddon: U.S. Nuclear Weapons Development since 1945'', أكتوبر 1995, Chucklea Productions, المجلد 8 , ص. 154, جدول A-1, "U.S. Nuclear Detonations and Tests, 1945–1962."</ref>. وقد اتضح فورًا أن "الانفجار الداخلي" كان أفضل تصميم لسلاح الانشطار النووي، ولكن العيب الوحيد فيها هو قطرها. فقنبلة "الرجل البدين" كان عرضها 5 أقدام (1.5 متر) مقابل قدمين (0 سم) لقنبلة "الولد الصغير".
 
بعد مرور 11 عام، التصميم الداخلي للمفجر تطور بشكل ملحوظ حيث ان قطر الكرة تغير من 11 قدم (1.5 م) Fat Man الىإلى 1 قدم (0.30م) و قطر الأنبوب كان يعادل قدمان (0.61 م) طولاً و اطلق عليه جهاز شان سوان {{إنك|Sean swan device}}.
جهاز فات مان بموديل Pu-239 بت كان قطره يساوي 3.6 انش (9 سم) اي انه بحجم كرة السوفتبول بيسبول. الجزء الاكبر منه كان في الية الانفجار و بالتحديد في طبقات U-238، الألمنيوم، و المتفجرات الشديدة. السبب من تقليل الحجم كان تصميم (انهيار، تفجير النقطتين) العامل المهم في تقليل الحجم هو التصميم الثنائي النقاط للمتفجرات.
 
===انفجار خطي ثنائي النقاط===
احد التصامي و هو عباره عن اعادة تشكيل الشكل البيضاوي الىإلى شكل دائري مع قوة ضغط اقل. يوجد في داخل الانفجار الخطي ماده صلبه غير قابله للتغير و كتلة ممتدة من مادة Pu-239 و تكون اكبر من الكتلة الموجودة في الجسم الكروي محشورة داخل اسطونة مع مواد قابلة للانفجار مع وجود فتيل في كلا الطرفين.<ref>[http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1.6.3 أسئلة حول الطاقة النووية أسئلة حول القنابل النووية: 4.1.6.3 Hybrid Assembly Techniques], accessed ديسمبر 1, 2007. وتم تصميم الرسم من هذا المرجع.</ref> إن التفجير يجعل من الحفرة الكبيره في الارض خطيرة عن طريق جعل النهايات عميقة، مما يشكل اشكال دائرية. ان الهزة ايضاً تعمل على تحويل البلوتونيوم -الذي هو عباره عن عنصر فلزي - من مرحلة الدلتا الىإلى الالفا بواسطة زيادة كثافته بنسبة 23٪ ولكن من دون ان ات يؤدي ذلك الىإلى تحويل القوة الدافعة الداخلية الىإلى انهيارحقيقي. ان الافتقار الىإلى الضغط يجعله غير كافي للاستخدام كقذائف مدفعية و ذخائر الهدم الذرية ولكن البساطة والقطر الصغير يجعله مناسباً لذلك. ان ذخائر الهدم الذرية (ADMs) والقذائف المدفعية معروفة ايضا بحقائب القنابل النووية؛ كمثال على ذلك القذائف المدفعية دبل يو ثمانية واربعين W48 اصغر سلاح نووي تم صنعه او نشره. كل الاسلحة ذات القيمة المنخفضة المستخدمة في المعارك سواء المسدس من نوع يو-235 ذات التصاميم المتفجرة او المنشطرة، يبقى تستوجب دفع اموال باهظة لانجاز اقطار بين 6 الىإلى 10 انش (254)مم.
 
===النظام الفعالي الجديد هو استخدام نقطتان للانفجار الداخلي===
المخطط الموضووع في عام 1945 بان يكون لمنفذ التفجير لكنه لم يكن في ذلك الوقت هناك اختبارات لتطوير التجربة البساطة في التصميم اعتبرت اكثر واقعية ومع الوقت اصبحت هناك قيود ولها احتياجات كثيرة وباستخدام الالمونيوم واستغلاله مكنهم من صنع ثلاثة طن من المتفجرات شديدة الانفجار. بعد الحرب، تم استعادة الاهتمام بتصميم التجويف. تكمن ميزته الواضحة في إمكانية حمل قذيفة مجوفة من البلاتينيوم، على شكل كتلة مسحوبة إلى الداخل باتجاه مركزها الفارغ، تحمل الزخم إلى مركز التجميع المصفح على شكل كرة صلبة. سيقوم بدفع نفسه الىإلى الداخل، مما يتطلب مدك U-238 أصغر، لا يتطلب استخدام دافع الألمنيوم و أقل قابلية للانفجار.
 
أمتلكت قنبلة فات مان قذيفتين متحدتي المركز على شكل جسم كروي يحتوي على متفجرات شديدة، يقارب سمكها 10 بوصات (25 سم). وتقذف القذيفة داخلية الإنفجار. احتوت القذيفة الخارجية على نمط يشبه كرة القدم يحتوي على 32 عدسة شديدة الانفجار، تحول كل عدسة الموجة المحدبة من مفجرها الىإلى موجة مقعرة مشابهة لشكل القذيفة الداخلية من الخارج. لو كان في الامكان استبدال هذه العدسات (32) باثنتين فقط، يُمكن للشكل الكروي شديد الانفجار أن يصبح إهليلجاً (كروي متتطاول) ذو قطر دائري أصغر بكثير.
 
توضيح جيد لاثنين من الملامح التي وردت في رسم توضيحي لبرنامج الأسلحة النووية السويدي عام 1956م (الذي تم انهاؤه قبل عمل تفجير تجريبي). الرسم التوضيحي يبيّن العناصر الأساسيّة في تصميم "نقطتين - حفرة جوفاء".
سطر 115:
{{مقال رئيسي|أسلحة نووية انشطارية}}
 
الخطوة التالية للتصغير بتسريع انشطار التجويف (pit) وذلك للحد من الوقت الأدنى المطلوب للاندماج في محفظة القصور الذاتي. قدم التجويف المفرغ موقعا مثاليا لحدوث الاندماج النووي لتعزيز عملية الانشطار النووي. مزيج من غازي الترايتيوم و الديتيروم بنسبة 50-50 يضخ الىإلى التجويف خلال مرحلة التسليح، ويندمج مع الهيليوم ومن ثم يطلق نيوترونات حرة حالما تبدأ عملية الانشطار. تبدأ النيوترونات بعدد كبير من التفاعلات المتسلسلة الجديدة بينما لايزال التجويف في المرحلة الحرجة او قريب من المرحلة الحرجة. هناك سبب لعدم التنشيط بمجرد إتقان التجويف. تم أول اختبار لفكرة الانصهار الانشطاري المعزز في 25 مايو 1951 في عملية "البيت الأخضر" في إنيويتوك (Eniwetok) والتي أنتجت 45.5 كيلوطن. التعزيز يقلل من طول القطر بثلاثة طرق جميعهم نتيجة لانشطار أسرع:
* بما أن التجويف الداخلي المضغوط للحفرة لا يحتاج لأن يبقوا معاً، فيمكن استبدال التلاعب الهائل ل U-238 بقذيفة البيريليوم خفيفة الوزن (لكي تعكس النيترونات الهاربة إلى الحفرة مرة أخرى) ويتم تقليل القطر.
* حجم تجويف الحفرة يمكن تقليله إلى النصف دون أن يقل الإنتاج. ويقل القطر مرة أخرى.
سطر 134:
[[ملف:Nuclear Weapon Miniaturization.png|400بك|يسار]]
 
بالاضافة الىإلى صناعة الاسلحة بحجم أصغر و أخف وزن او أقل استخداما للمواد الانشطارية بكمية معينة، من الفوائد الاخرى للتعزيز هو أنه يجعل الاسلحة في مأمن من تداخل الاشعاعات (radiation interference، RI) تم اكتشاف ذلك في منتصف الخمسينات من القرن العشرين 1950 حيث انه اذا أخرجت النوى من البلوتينيوم (plutonium ) سيكون عرضة للانفجار اذا ما تعرض لكميات كبيرة من الاشعاع من انفجار نووي قريب (قد تتلف الالكترونات ايضا و هذا يشكل مشكلة اخرى). تداخل الاشعاعات (RI) كان بحد ذاته مشكلة قبل ظهور انظمة (رادار الانذار المبكر الفعال effective early warning radar systems) حيث انها تجعل الضربة الاولى للسلاح غير مجدية. التعزيز يقلل من كمية البلوتينيوم اللازمة في السلاح الىإلى أقل كمية ستكون عرضة لهذا التأثير.
 
==لأسلحة النووية الحرارية الثنائية المراحل==
سطر 145:
في الأربعينات الميلادية، أعتقد مصمموا القنبلة النووية في [[مختبر لوس ألاموس الأمريكي]] بأن المرحلة الثانية ستكون بواسطة مادة الديوتيريوم بوضعها على هيئة مادة منصهرة أو على هيئة مركب الهيدريد. وهذا يجعل ردة فعل الاندماج النووي D-D، وهو أصعب من الحصول على D-T، لكنه أقل تكلفة. والقنبلة الذرية حينها ستتركز على جهة واحدة فقط مما يسبب اصصطدام وانضغاط يتسببان بسخونة الجهة القريبة وببداية التكاثر مع الجهة البعيدة. ولكن المحاكاة الرياضية برهنت على عدم إمكانية عمل هذه الطريقة حتى مع إضافة كميات كبيرة من مادة التريتيوم المكلفة ماديًا.
 
إن اسطوانه الغاز بكاملها تحتاج الىإلى ان تكون مغلفة بطاقة الانشطار النووي حتى يمكن ضغطها وتسخينها مثلما يكون الحال عند شحن الاداة الاضافية لزيادة القوة في المرحلة الأوليه. إن تصميم الاسطوانه قد تم في يناير 1951 عندما اخترع ادوارد تيللر و ستانيسلو اولاك الانفجار الاشعاعي. لما يقارب الثلاث عقود قد تم تسميتها ب تيللر اولام القنبلة الهيدروجينية.
 
لقد تم اختبار مفهوم الانفجار النووي لأول مره في شهر مايو 9 من عام 1951 في جورج شوت لعمليات المنازل الخضراء في مدينة إينويتوكوالتي انتج عنه 225 كيلو طن. ولكن الاختبار الشامل الاول قد تم في الاول من نوفمبر من عام 1952 في مايك شوت لعمليات اللبلاب في اينويتوكو والذي نتج عنه 10.4 ميجا طن.
سطر 174:
 
===مابين الاطوار (أو المراحل):===
تمر الطاقة في السلاح الحراري النووي في مرحلتين من التأثيرات من الأولية الىإلى الثانوية. هناك محول أساسي للطاقة يدعى بالمرحلة الداخلية، مابين المراحل الأولية و الثانوية، يقوم بحماية وقود الانصهار الثانوي من التسخين السريع ((أو إرتفاع درجة الحرارة بشكل سريع)) مالأمر الذي اقد يؤدي الىإلى انفجاره عند درجات حارة اعتيادية (والمنخفضة) قبل ان يكون هناك فرصة للانصهار و تفاعلات الانشطار.
لا تتوفر إلا معلومات قليلة واضحة في المقالات العلمية حول آلية عمل المرحلة الداخلية. صدر أول ما ذُكر عن المرحلة الداخلية عن الحكومة الأمريكية في وثيقة رسمية تحوي شرحا توضيحيا للجمهور برسوم بيانية حديثة لتعزيز برنامج ( البديل المعتمد للصواريخ الحربية {{إنك|Reliable Replacement Warhead Program}}. الذي اذا تم بناؤه، سيستبدل هذا التصميم الجديد " المواد الهشة والسامة" و "و المواد غالية التكلفة والخاصة" في المرحلة الداخلية<ref>[[commons:File:Reliable Replacement Warhead Features.jpg|"Improved Security, Safety & Manufacturability of the Reliable Replacement Warhead,"]] NNSA مارس 2007.</ref>. يشير هذا البيان الىإلى أن المرحلة الداخلية قد تحتوي على البريليوم ليهدئ من تدفق النيوترونات من الطور الأول، و قد يمتص شيئا منها و يعاد إشعاع الاشعة السينية x-rays بطريقة ما<ref>[[commons:File:Reliable Replacement Warhead Features.jpg|"Improved Security, Safety & Manufacturability of the Reliable Replacement Warhead,"]] NNSA March 2007.</ref>. و هناك ايضا بعض التكهنات بأن المواد المستخدمة في المرحلة الداخلية، والتي تُسمي بالكود فوجبانك {{إنك|FOGBANK}} قد تكون مادة الفضاء او الهلامة الغازية الايروجيل (aerogel)، قد يكون ممزوجا مع البريليوم أو مواد أخرى<ref>[http://www.fas.org/sgp/eprint/morland_image026.gif A 1976 drawing] والتي تدل على المراحل الداخلية التي تمتص تم تعيد بث الإشعاعات السينية. من هاوارد منلارد، [http://www.fas.org/sgp/eprint/cardozo.html "المقالة,"] '''مراجعة قانون كاردوس''', مارس 2005, p 1374.</ref> .
 
المستويين الداخلي والثانوي مغطيان معا داخل غشاء فولاذي مقاوم للصدأ لتكوين جمعية فرعية معلبة، هذا الترتيب والذي لم يتصوره أحد في أي رسم مفتوح المصدر. التوضيح الأكثر تفصيلا للانترستيج يظهر سلاح نووي حراري بريطاني مع مجموعة من العناصر بين الأساسية والثانوية الأسطوانية سميت "عدسات النهاية وتركيز النيترون" و "عاكس/ نيترون حامل السلاح" و"الغلاف العاكس".
سطر 183:
بينما تصب كل تصاميم القنابل النووية في احد التصنيفات السابقة، تصبح بعض التصاميم الخاصة بين الفينة والأخرى مثار لتقارير جديدة ونقاشات العامة، غالباً بتوصيفات خاطئة حول كيفية عملها وماذا ستعمل. مثال:
===القنابل الهيدروجينية===
بينما كل القنابل النووية الحديثة (الانشطارية والالتحامية على السواء) تستخدم التحام ال D-T، القنابل الهيدروجينية في النظرة العامة هي أجهزة تستخدم عدة ملايين من الاطنان وأقوى بآلاف المرات من الابن الأصغر لقنبلة هيروشيما. هذه القنابل ذات النواتج العالية هي قنابل نووية حرارية ثنائية المرحلة ترتقي الىإلى مستوى العائد المطلوب مع انشطار اليورانيوم، كالعادة، مزودتها بمعظم طاقتها النووية.
 
أثارت فكرة القنبلة الهيدروجينية الأولى اهتمام الرأي العام في عام 1949 عندما أعلن علماء بارزين موقفهم الرافض من بناء قنابل نووية أقوى من نموذج الانشطار القياسي النقي لأسباب أخلاقية وعملية. كان افتراضهم أن اعتبارات الكتلة الحرجة سوف تحد من حجم الانفجارات الانشطارية بينما الانفجار الانصهاري من الممكن أن تكون قوته بكبر امداده بالوقود الذي ليس له حد للكتلة الحرجة. في عام 1949 فجر الاتحاد السوفيتي أول قنبلة انشطارية لهم وفي عام 1950 انهى الرئيس الأمريكي هاري ترومان الجدل حول القنبلة الهيدروجينية حين أصدر أمر للمصممين في لوس ألاموس لبناء واحدة. في عام 1952 تم اعلان انفجار آيفي مايك بقوة 10.4 ميجاطن كأول اختبار لقنبلة هيدروجينية معززة بذلك فكرة أن القنابل الهيدروجينية أقوى ألف مرة من القنابل الانشطارية.
 
في عام 1954 عُرف روبرت أوبنهايمر بمعارضته للقنابل الهيدروجينية، في ذلك الوقت لم يكن معروفاً لدى العامة بأن هناك نوعان آخران من القنابل الهيدروجينية -غير النوع الموصوف بدقة بأنه قنبلة هيدروجينية-. وفي الثالث والعشرين من شهر مايو عندما تم إلغاء تصريحه الأمني؛ كان البند الثالث من بنود الأحكام الأربعة العامة المتعارضة معه هو "مبدأه في برنامج الأسلحة الهيدروجينية". وفي عام 1949 قام روبرت بدعم المرحلة الأولية لتعزيز انشطار القنابل المنشطرة لتحقيق أقصى قدر من القوة التفجيرية في الترسانة بإعطاء المفاضلة بين منتجات البلاتنيوم و التراتيوم. و يذكر أيضاً بأنه كان ضد القنابل النووية الحرارية ثنائية المرحلة حتى عام 1951 حينما حدث الانهيار الإشعاعي الذي وصفه بأنه "التقنية الحلوة"، موضحاً ذلك بشكل عملي في البداية. ولم يُكشف عن موقفه حتى عام 1976، وذلك بعد تسع سنوات بعد وفاته<ref name="Advisor">Herbert York, ''The Advisors: Oppenheimer, Teller and the Superbomb )المستشارون: أوبنهايمر، تيللر والمتفجرة الفائقة القوة)'' (1976).</ref>.
عندما حلت قاذفات الصواريخ الباليستية محل القنابل في الستينيات، تم استبدال معظم القنابل متعددة الأطنان برؤوس صواريخ -وهذا يتضمن القنابل النووية الحرارية- وقد تم تقليلها الىإلى واحد طن أو أقل.
 
===ساعة النداء/سلويكا===
سطر 200:
استجابةً لمخاوف العامة على تداعيات الغبار النووي، فقد بُذلت جهود كبيرة لتصميم سلاح نووي نظيف متعدد الميجاطن، ويبقى الاعتماد الكامل على الاندماج النووي تقريبًا. يمكن للطاقة الناتجة عن طريق اندماج اليورانيوم الغير مخصب طبيعيًا، عندما يستخدم كمادة وقود نووي في المراحل الثانوية والمراحل المتعاقبة كما في تصميم "تيللر-أولام" من تقليل المحصول النهائي بشكل واضح كما كان في اختبار قلعة برافو {{إنك|Castle Bravo}}، حيث أدرك العلماء بأن وضع الوقود النووي كمادة في قنبلة غير قابلة للانشطار هو شرط أساسي في انفجار قنبلة 'نظيفة'، ومن الواضح أن في مثل هذه القنابل ستكون هناك كمية هائلة نسبيًا من المواد التي لا تجري فيها أي تحولات من كتلية إلى طاقة على الإطلاق، وذلك لحجم معين. والأسحلة "القذرة" مع أكثر من وقود نووي انشطاري يُعتبر أقوى بكثير من الأسلحة 'النظيفة' (أو، للحصول على عائد في النواتج، لذا هي أخف بكثير من الأسلحة 'النظيفة'). وأقدم حادثة معروفة لجهاز مكون من ثلاث مراحل يجرى اختبارها مع المرحلة الثالثة، هو الجهاز الذي سُمي الثلاثي، والموقودة بالمرحة الثانية كانت في 27 مايو 1956م في جهاز الباسون. وهذا الجهاز أُختبر في طلقة زوني إحدى عمليات الجناح الأحمر. هذه الطلقة استخدمت وقود نووي غير قابلة للاندماج مع مادة عازلة مثل:التنجستن أو الرصاص. وقد كان المحصول النهائي 3.4 ميجاطن مما يعني 85% اندماج وفقط 15% انشطار. وكما تؤكد السجلات العامة للأجهزة التي أنتجت أن النسبة الأعلى من محصولهم عن طريق الاندماج فقط هو 50 ميجاطن وكان ذلك في "قنبلة قيصر" ووصلت نسبة الاندماج إلى 97% من القنبلة الكلية<ref>[http://nuclearweaponarchive.org/Nwfaq/Nfaq4-5.html 4.5 Thermonuclear Weapon Designs and Later Subsections]. Nuclearweaponarchive.org. Retrieved on 2011-05-01.</ref>. والـ 9.3 ميجاطن في اختبار (Hardtack Poplar) حيث وصلت نسبة الاندماج إلى 95.2%. [32] والـ4.5 ميجاطن في اختبار نافاجو (Navajo) وصلت نسبة الاندماج فيه إلى 95%.
 
في التاسع عشرة من يوليو (تموز) 1956، قال لويس شتراوس رئيس وكالة الطاقة الذرية الدولية بأن ريدويج زوني اطلقت اختبار تفجير نظيف مما "انتج الكثير من الأهمية.... من الناحية الإنسانية" ومع ذلك وبعد أقل من يومين من هذا الاعلان تم اختبار النسخة القذرة من الباسون ويدعى الباسون الأولي مع عبث اليورانيوم 238على مركب قبالة سواحل جزيرة أتول بيكيني كمكان لأطلاق الرديدوينج تيوا. أنتج الباسون الأولي عائد يقدر بخمسة ميجا طن 87% منها جاء نتيجة الانشطار. البيانات التي جاءت من هذا الاختبار وغيره توجت في نهاية المطاف انتشار أعلى عوائد الأسلحة النووية الأمريكية المعروفة وأعلى نسبة ناتج الىإلى وزن لسلاح تم صنعه، وسلاح نووي حراري من ثلاث مراحل بأعلى ناتج قذر حيث يبلغ 25 ميجا طن صمم كقنبلة نووية بي 41، التي كان من المقرر أن يحملها سلاح الجو الأمريكي الىإلى أن تم تفكيكها ولذلك لم يتم اختبار هذا السلاح بالكامل.
 
وعلى هذا النحو تبدو القنابل النظيفة ذات العائد المرتفع مجرد تجارب في العلاقات العامة فالأسلحة المنتشرة فعليا هي الإصدارات القذرة التي ضاعفت العائد لنفس حجم الجهاز. تصاميم الجيل الرابع والخامس الحديثة من الأسلحة النووية بما في ذلك أسلحة الانصهار النقية وأجهزة دفع الذبذبة النووية للمادة المضادة المحفزة
سطر 208:
{{مقال رئيسي|قنبلة الكوبالت}}
 
قنبلة يوم القيامة الخيالية أشتهرت عن طريق رواية نيفل شوت عام 1957 و الفيلم التابع لها عام 1959، بعنوان على الشاطئ وكانت قنبلة الكوبالت قنبلة هايدروجينية ذات غطاء من الكوبالت وكان من المفترض أن الكوبالت المُفعل عن طريق النيوترونات يستطيع أن يزيد الأضرار البيئية الناجمة عن تداعيات البقايا المشعة الناتجة من الانفجار النووي. شاع صيت هذه القنابل في فيلم "الدكتور سترينجلوف أو: كيف تعلمت أن أكف عن القلق و أحب القنبلة" عام 1964. تمت الاشارة الىإلى العنصر الكيميائي المضاف الىإلى القنابل بالكوبالت-ثوريوم جي.
 
طُلبت مثل هذه الأسلحة "المالحة" من قبل القوات الجوية الأمريكية وتم فحصها بدقة، ربما لدرجة صنعها وتجربتها، ولكن لم تنشر. في نسخة 1964م من كتاب "دي او دي/أي إي سي تأثير الأسلحة النووية، تم توضيح الموضوع في باب جديد بعنوان الحرب الإشعاعية. فنواتج الإنشطار مميتة بقدر الكوبلت المنشطر بالنيوترون. السلاح عالي-الإنشطار الحراري النووي الموحد هو سلاح تلقائي للحرب الإشعاعية، ببشاعة قنبلة الكوبلت. في البداية، تُكافئ أشعة الجاما الناتجة عن الإنشطار حجم قنبلة الانشطار الانصهار-الانشطار أكثر شدة من كوبلت - 60. 15000 مرة أكثر شدة في ساعة، 35 مرة أكثر شدة في اسبوع، 5 مرات أكثر شدة في شهر، وتقريبا مكافئ في ستة أشهر. ثم ينحدر الإنشطار بسرعة حتى يتكون التهدم النووي لكوبلت -60 الذي يكون أكثر شدة بثمانية مرات من نواتج الإنشطار في سنة و 150 مرة أشد في خمس سنوات.النظير طويل العمر الذي نتج بالإنشطار سيتجاوز الكوبلت -60 بعد 75 سنة تقريبا.
سطر 217:
الثلاثي( 3مراحل) التصميم مثل يوآس ب41 سلاح نووي وقنبلة السوفييت تسار (تمت مناقشتها سابقاً) التي تم تطويرها في اواخر 1950 م وأوائل 1960م، التي تم الاستغناء عنها جميعها، مثل النموذج لمنتجات عديده قوية كالقنابل الثلاثيه التي لا تدمر الاهداف بكفاءه. عندما تهدر الطاقة في المجال فوق الأرض وتحتها. لذا، تُتيح جميع الأسلحة الثلاثيه وسيلة في الترسانات النوويه الحديثة لاستخدام عدة تكتيكات صغيره لاسلحة المرحلتين (على سبيل المثال ام أي آر في) بعض هذه القنابل ذو مرحلتين، حتى في المجال الأقل فعاليه، ومع ذلك فهو مدمر بشكل أكبر نظراً لمجموع وزن القنبله، حيث يمكنها أن توزع مايقارب بعدين من الأراضي عن النقطة الهدف.
 
كل مايسمى باسلحة " الانشطار-الانصهار-الانشطار النووي" (كالرؤوس الحربية النووية الحرارية المتقدمة التقليدية) توظف الخطوة الاضافية لغطاء الانشطار، باستخدام نيترونات الانصهار. التي تعمل كالتالي: نيترونات عالية الطاقة او سريعة متولدة بالانصهار تستخدم لتشطر الغطاء القابل للنصهار المُغلف لمنطقة الانصهار. كان يُصنع هذا الغطاء في الماضي باستخدام اليورانيوم الطبيعي او المنضب. ولكن أسلحة اليوم الاستثنائية في الحجم والوزن (كالاسلحة الاستراتيجية الحديثة) تستخدم اليورانيوم المتوسط الىإلى عالي التخصيب كمادة غطاء (انظر في الاسفل قسم الرؤؤس الحربية النووية الحرارية الاوراللويه). الانشطار السريع للغطاء الثانوي في قنابل الانشطار-الانصهار-الانشطار النووي في بعض الاحيان تعود الىإلى كونها مرحلة ثالثة في القنبلة، ولكن يجب أن لا تخلط مع التصميم النووي الحراري ثلاثي المرحلة المهمل، حيث انه يوجد مرحلة انصهار اخرى ثالثة كاملة.
 
تم إلغاء غطاء الإنشطار في فترة اختبار القنبلة الذرية في الهواء الطلق وذلك لصنع ما يسمى بـ"القنابل النظيفة" (ارجو الاطلاع على ما ذُكر سابقاً)، أو لتقليل كمية الغبار الذري المتساقط من نواتج الانشطار في انفجارات هائلة بقوة كبيرة من الميغا طن. حدث ذلك غالباً عند اختبار تصاميم كبيرة جداً من القنابل ذات الثلاث مراحل مثل قنبلة القيصر والاختبار الزوني من سلسلة الاختبارات النووية كما ذكر أعلاه. كان من المفترض عند اختبار مثل تلك الأسلحة (بل كان يظهر ذلك بشكل عملي أحياناً) أن يكون غطاء اليورانيوم الطبيعي أو اليورانيوم المخصب قابل للإضافة دائماً في حال الرغبة في ذلك لأي قنبلة معطاة بدون غطاء، وذلك لزيادة الانتاجية من مرتين الىإلى خمس مرات.
 
لا يستخدم غطاء الانشطار في الأسلحة الإشعاعية المطورة او القنبلة النيوترونية كما سيتم مناقشتها لاحقاً.
سطر 247:
 
إن كل اي ار دبليو كانت نوويات حرارية ثنائية المرحلة مع كل اليورانيوم المزال الغير ضروري لتقليل محصلة الانشطار، حيث يُنتِج النصهار النيترونات. لقد تم تطويرها في الخمسينات الميلادية من القرن العشرين، بينما نُشرت لأول مرة في فترة السبعينات بواسطة القوات الأمريكية في أوروبا، وسُحبت في فترة التسعينات الميلادية.
إن القنبلة النيترونية ملائمة فقط إذا كانت المحصلة عالية بما فيه الكفاية لاشتعال مرحلة الانصهار الفعال، وإذا كانت المحصلة منخفضة بما فيه الكفاية لحالة السماكة التي لن تمتص نيترونات كثيرة. مما يعني أن قنابل النيترونات لديها مدى محصلة من 1 الىإلى 10 كيلوطن مع النسبة المنشطرة التي تتفاوت بين 50% في كيلو طن واحد الىإلى 25% في عشرة كيلو طن (كلها تأتي من المرحلة الاولية). إن إنتاج النيوترون في كيلو طن واحد عندما يكون من 10 الىإلى 15 مرة لهو أكبر من سلاح الانهيار الانشطاري الخام أو رأس قذيفة استراتيجي مثل الدبليو 87 او الدبليو88.
 
===اسلحة اورالوي الحرارية===
سطر 274:
تم عقد أول اجتماع تصنيفي لتصاميم الأسلحة النووية في منتصف عام 1942م ب[[جامعة كاليفورنيا، بركلي|جامعة كاليفورنيا في بركلي]] وقد تم العثور على إكتشافات مهمه مبكرة من قبل [[مختبر لورنس بيركلي الوطني]] القريب. ففي في عام 1940م، مثلاً، تم إنتاج جهاز تحطيم الذرة وعزل البلوتونيوم واكتشفوا للتو الجهود السرية لصناعة اسلحة وطنية، وفي هذه الأثناء تم توظيف البروفيسور [[روبرت أوبنهايمر]]، وكان أول عمل له الدعوة لعقد مؤتمر صيف عام 1942م.
 
بحلول الوقت الذي نقل فيه عمله الىإلى مدينة لوس ألاموس، نيو مكسيكو السرية الجديدة في ربيع عام 1943، كانت المعرفة المتراكمة عن تصميم الاسلحة النووية تتكون من 5 محاضرات لبروفيسور روبرت سيربر في بيركيلي، منسوخة و منشورة على أنها كتاب لوس ألاموس التمهيدي. تحدث الكتاب عن طاقة الانقسام، صناعة و اسر النيوترون، تفاعلات النيوترون التسلسليه، الكتلة الحرجة، العبث، و ما يحدث قل الانفجار، و ثلاثة طرق لتركيب قنبلة: تجميع السلاح الناري، الانهيار، و "الطرق المحفزة"، الطريقة الوحيدة التي تبين أنها ذات طريق مزدود.
===مخبر لوس ألموس===
في لوس ألموس، في شهر أبريل من عام 1944، لقد اكتشف العالم [[إميليو سيغري]] أن تركيب القنبلة المدفعية المقترحة بإسم "الرجل النحيل" لن يعمل باستخدام عنصر بلوتونيوم لمشاكل في وحدة الكتلة الذرية الذي تسببه الشوائب الموجودة في بي يو-240. إذ أن القنبلة الإنفجارية باسم "الرجل السمين" كان لها الأفضلية لأن تصبح الخيار الوحيد لإستخدام عنصر بلوتونيوم. لقد ولدت المناقشات في بيركلي احصائيات نظرية للكتلة الحرجة ولكن لم يُحسم شيء في هذا الأمر.
سطر 307:
يظهر في الصورة أدناه الجهاز الروبيان، انفجرت في 1 مارس 1954 في بيكيني، كاختبار قلعة برافو. كان لها انفجار 15 مليون طن أكبر من أي وقت مضى من قبل الولايات المتحدة. يظهر خيال رجل للمقياس. ويدعم الجهاز من الأسفل، في النهايات.
 
الانابيب تطلق الىإلى السقف. التي يبدو أنها تدعم، هي أنابيب ضوء التشخيصية. الانابيب الثمانية في النهايات اليمنى (1) أرسلت معلومات حول التفجير الابتدائي. اثنين في الوسط (2) لوحظ الوقت عندما وصل الإشعاع في النهاية البعيدة لقناة الإشعاع، والفرق بينهم (2) و (3) يكون وقت عبور الإشعاع للقناة<ref>Chuck Hansen, ''The Swords of Armageddon'', Volume IV, pp. 211–212, 284.</ref>.
[[ملف:Castle Bravo Shrimp composite.png|600 بك|centre]]
 
سطر 323:
 
تغطي حفر خامدة قسم مسطح يوكا من ال (أن تي أس)، نتيجة لانهيار الأرض فوق الكهوف المشعة تحت الارض التي تكونت بفعل الانفجارات النووية (أنظر الصورة).
بعد حد معاهدة حضر التجارب 1974 (TTBT)، والتي قيدت انفجارات تحت الارض الىإلى 150 كيلو طن او اقل، والرؤوس الحربية مثل نصف مليون طن دبليو 88 كان لابد من اختبارها تحت اقل من الانتاجية الكاملة. بما انه لزاما ان يتفجر الابتدائي بعنف للحصول على بيانات حول الانفجار الداخلي للثانوي، فان النقص في الانتاجية كان يجب ان يأتي من الثانوية. استبدال الكثير من ديوترايد الليثيوم 6 للوقود المنصهر مع هيدريد الليثيوم 7 قلص التريتيوم المتاح للاندماج، وبالتالي العائد النهائي، من دون تغيير ديناميت الانفجار الداخلي. بالإمكان تقييم اداء الجهاز باستخدام انابيب ضوء، واجهزة استشعار اخرى، وتحليل كتلة السلاح المحصور. ويمكن حساب العائد الكامل للأسلحة النووية المخزونة عن طريق القراءة.
 
==مرافق الانتاج==
سطر 333:
 
قام معمل (واي-12) بتصنيع وقود الاندماج ليثيوم-6 ديوترايد و أجزاء يورانيوم-238، وهما المكونان الاخران لجهاز المرحلة الثانية (للثانوي).
قام معمل سافانا ريفر الموجود بمدينة ايكن بولاية كارولينا الجنوبية والذي تم بناءه ايضا عام 1952م، قام بتشغيل مفاعلات نووية والتي كانت تقوم بتحويل اليورانيوم-238 الىإلى بلوتونيوم-239 للتجاويف، وتحويل ليثيوم-6 (والذي يتم انتاجه في معمل واي-12 Y-12) الىإلى ترايتيوم لاستخدامه في الغاز المعزز. وبما ان مفاعلات المعمل كانت تعدل باستخدام الماء الثقيل و واكسيد الديتيريوم فقد قام ايضا بصناعة الديتيروم للغاز المعزز ولمعمل واي-12 لاستخدامه في تصنيع ليثيوم-6 ديوترايد.
 
==تصميم رأس صاروخ وقائي==
سطر 369:
 
===وصلة العمل الاختياري===
بالاضافة الىإلى الخطوات السابقة للتقليل من احتمالية انفجار نوووي بالخطأ، آليات القفل المشار اليها من قبل دول التحالف حيث وصلة العمل الاختياري احيانا تكون متصلة بآليات التحكم للاسلحة النووية. وصلة العمل الاختياري تعمل فقط لتجنب الاستخدام الغير مخول له للأسلحة النووية.
 
==المراجع==