مشكلة ماشية أرخميدس

مشكلة ماشية أرخميدس (أو مشكلة الأبقار أو مشكلة أرخميدس ) هي مشكلة في تحليل ديوفانتين ، دراسة معادلات كثيرة الحدود مع حلول صحيحة . تنسب المشكلة إلى أرخميدس ، وتتضمن حساب عدد الماشية في قطيع إله الشمس مع مجموعة معينة من القيود. تم اكتشاف المشكلة بواسطة إفرايم ليسينغ في مخطوطة يونانية تحتوي على قصيدة من أربعة وأربعين سطرًا ، في مكتبة هرتسوغ أغسطس في فولفنبوتل، ألمانيا عام 1773. [1]

مشكلة ماشية أرخميدس
معلومات عامة
العنوان
Πρόβλημα βοεικόν (بالإغريقية) عدل القيمة على Wikidata
المرسل إليه
الصانع
المُؤَلِّف
لغة العمل أو لغة الاسم
السطر الأول
Πληθὺν Ἠελίοιο βοῶν, ὦ ξεῖνε, μέτρησον (بالإغريقية) عدل القيمة على Wikidata
تعريف الصيغة
عدل القيمة على Wikidata

ظلت المشكلة دون حل لعدة سنوات ، ويرجع ذلك جزئيًا إلى صعوبة حساب الأعداد الضخمة التي ينطوي عليها الحل. تم إيجاد الحل العام في عام 1880 بواسطة كارل إرنست أوغست أمثور (1845–1916) في دريسدن ، ألمانيا. [2] [3] [4] باستخدام الجداول اللوغاريتمية ، قام بحساب الأرقام الأولى من أصغر حل ، موضحا أنه تقريبا يساوي ماشية، أكثر بكثير مما يمكن أن يتم استيعابه في الكون المرئي . [5] الصيغة العشرية طويلة جدًا بحيث لا يستطيع البشر حسابها بالضبط ، ولكن يمكن للحزم الحسابية الدقيقة المتعددة على أجهزة الكمبيوتر كتابتها بشكل صريح.

التاريخ عدل

في عام 1769 ، تم تعيين إفرايم ليسينغ أمين مكتبة هرتسوغ أغسطس في فولفنبوتل ، ألمانيا ، والتي تحتوي على العديد من المخطوطات اليونانية واللاتينية. [6] بعد بضع سنوات ، نشر ليسينغ ترجمات لبعض المخطوطات مع التعليقات. من بينها قصيدة يونانية من أربعة وأربعين سطرًا ، تحتوي على مشكلة حسابية تطلب من القارئ العثور على عدد الماشية في قطيع إله الشمس. وتنسب الآن بشكل عام إلى أرخميدس. [7] [8]

المشكلة عدل

المشكلة ، من اختصار الترجمات الألمانية التي نشرها جورج نيسلمان في عام 1842 ، و كرومبيجل في عام 1880 ، تنص على:

احسب ، يا صديقي ، عدد ماشية الشمس التي كانت ترعى ذات مرة على سهول صقلية ، مقسمة حسب اللون إلى أربعة قطعان ، واحدة من لون الحليب الأبيض ، وواحدة سوداء ، وواحدة مرقطة وأخرى صفراء. عدد الثيران أكبر من عدد الأبقار ، والعلاقة بينهما هي:

الثيران البيضاء   الثيران السوداء + الثيران الصفراء ،
الثيران السوداء   الثيران مرقطة + الثيران صفراء ،
الثيران المرقطة   الثيران بيضاء + الثيران صفراء ،
الأبقار البيضاء   القطيع الأسود ،
الأبقار السوداء   القطيع المرقط ،
الأبقار المرقطة   القطيع الأصفر ،
الأبقار الصفراء   القطيع الأبيض.

إذا استطعت أن تعطي ، أيها الصديق ، عدد كل نوع من الثيران والأبقار ، فأنت لست مبتدئًا في الأرقام ، ولكن لا يمكن اعتبارك ذي مهارة عالية. ضع في اعتبارك العلاقات الإضافية التالية بين ثيران الشمس:

الثيران البيضاء + الثيران السوداء = رقم مربع ،
الثيران المرقطة + الثيران الصفراء = رقم مثلث .

إذا قمت أيضًا بحساب هذه أيضًا ، يا صديقي ، ووجدت العدد الإجمالي للماشية ، ابتهج كفاتح، لأنك أثبت أنك الأكثر مهارة في الأرقام. [9]

الحل عدل

يمكن حل الجزء الأول من المشكلة بسهولة عن طريق إنشاء نظام المعادلات . إذا كان عدد الثيران البيضاء والسوداء والمرقطة والصفراء مكتوبًا   و   ، ويكتب عدد الأبقار البيضاء والسوداء والمرقطة والأصفر   و   ، المشكلة تكمن ببساطة في إيجاد حل لـ:

 

وهو نظام من سبع معادلات مع ثمانية مطلوبات مجهولة. وهو نظام غير محدد ولديه ما لا نهاية من الحلول. أقل الأعداد الصحيحة الإيجابية التي تحقق المعادلات السبع هي:

 

وهو ما مجموعه 50،389،082 من الماشية [9] والحلول الأخرى هي مضاعفات لا يتجزأ منها. لاحظ أن الأرقام الأربعة الأولى هي مضاعفات 4657 ، وهي قيمة ستظهر بشكل متكرر أدناه.

تم العثور على الحل العام للجزء الثاني من المشكلة لأول مرة بواسطة أ. أمثور [10] في عام 1880. تم وصف النسخة التالية منه بواسطة هندريك لنسترا، [5] استنادًا إلى معادلة بيل : يجب أن يتم ضرب الحل المذكور أعلاه للجزء الأول من المشكلة في

 

حيث أن

 

و j هي أي عدد صحيح موجب. مكافئ، لتربيع w الناتج من

 

حيث أن { u ، v } هي الحلول الأساسية لمعادلة بيل

 

حجم أصغر قطيع يمكن أن يرضي كلا الجزأين الأول والثاني من المشكلة يتم إعطاؤه بواسطة j = 1 ، وهو حوالي   (حلها أمثور أولاً). يمكن لأجهزة الكمبيوتر الحديثة بسهولة طباعة جميع أرقام الإجابة. تم ذلك لأول مرة في جامعة واترلو ، في عام 1965 بواسطة هيو ويليامز ، ر.أ. جيرمان ، وتشارلز روبرت زارنك. استخدموا مزيجًا من أجهزة الكمبيوتر IBM 7040 وIBM 1620 . [11]

معادلة بيل عدل

إن قيود الجزء الثاني من المشكلة واضحة ويمكن إعطاء معادلة بيل الفعلية التي تحتاج إلى حل بسهولة. أولاً ، يطلب أن يكون W+B مربعًا ، أو باستخدام القيم الواردة أعلاه ،

 

وبالتالي يجب على المرء تعيين

k = (3) (11) (29) (4657) q 2

لبعض العدد الصحيح q . هذا يحل الشرط الأول. ثانيًا ، يتطلب أن يكون D + Y رقمًا مثلثًا ،

 

الحل من أجل t ،

 

استبدال قيمة D + Y و k وإيجاد قيمة q 2 بحيث أن المييز في هذه المعادلة من الدرجة الثانية هو مربع مثالي p 2 يستلزم حل معادلة بيل ،

 

كان نهج أمثور الذي تمت مناقشته في القسم السابق أساسيًا للعثور على أصغر v بحيث يمكن تقسيمه بشكل متكامل على 2 · 4657. الحل الأساسي لهذه المعادلة يحتوي على أكثر من 100000 رقم.

المراجع عدل

  1. ^ Lessing, Gotthold Ephraim (1773). Zur Geschichte und Litteratur: aus den Schätzen der Herzoglichen Bibliothek zu Wolfenbüttel, Zweyter Beytrag [On History and Literature: from the treasures of the ducal library at Wolfenbüttel, second article] (بالألمانية واليونانية). Braunschweig, (Germany): Fürstlicher Waysenhaus. pp. 421–425. Archived from the original on 2018-09-17.
  2. ^ Krumbiegel, B.; Amthor, A. (1880). "Das Problema bovinum des Archimedes" [The cattle problem of Archimedes]. Zeitschrift für Mathematik und Physik: . Historisch-literarische Abtheilung [Journal for Mathematics and Physics: Historical-literary section] (بالألمانية واليونانية واللاتينية). 25: 121–136, 153–171. Archived from the original on 2020-06-16.
  3. ^ Biographical information about August Amthor:
  4. ^ The problem was solved independently in 1895 by Adam Henry Bell, a surveyor and civil engineer of Hillsboro, Illinois, USA. See:
  5. ^ أ ب Lenstra، H. W., Jr. (2002)، "Solving the Pell Equation" (PDF)، إشعارات جمعية الرياضيات الأمريكية، ج. 49، ص. 182–192، MR:1875156، مؤرشف من الأصل (PDF) في 2020-02-07.{{استشهاد}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  6. ^ Rorres، Chris. "Archimedes' Cattle Problem (Statement)". مؤرشف من الأصل في 2007-01-24. اطلع عليه بتاريخ 2007-01-24.
  7. ^ Fraser، P.M. (1972). Ptolemaic Alexandria. دار نشر جامعة أكسفورد.
  8. ^ Weil، A. (1972). Number Theory, an Approach Through History. Birkhäuser.
  9. ^ أ ب Merriman، Mansfield (1905). "The Cattle Problem of Archimedes". بوبيولار ساينس. ج. 67: 660–665.
  10. ^ B. Krumbiegel, A. Amthor, Das Problema Bovinum des Archimedes, Historisch-literarische Abteilung der Zeitschrift für Mathematik und Physik 25 (1880) 121–136, 153–171.
  11. ^ Harold Alkema and Kenneth McLaughlin (2007). "Unbundling Computing at The University of Waterloo". جامعة واترلو. مؤرشف من الأصل في 2011-04-04. اطلع عليه بتاريخ 2011-04-05. (includes pictures)

قراءة متعمقة عدل

روابط خارجية عدل